CCCCCCCCCCCC

WinDriver™ USB User's
Manual

Jungo Connectivity Ltd.

Version 11.8.0

WinDriver™ USB User's Manual
Copyright © 2015 Jungo Connectivity Ltd. All Rights Reserved

Information in this document is subject to change without notice. The software described in this document is furnished under alicense
agreement. The software may be used, copied or distributed only in accordance with that agreement. No part of this publication

may be reproduced, stored in aretrieval system, or transmitted in any form or any means, electronically or mechanically, including
photocopying and recording for any purpose without the written permission of Jungo Connectivity Ltd.

Brand and product names mentioned in this document are trademarks of their respective owners and are used here only for
identification purposes.

© 2015 Jungo Connectivity Ltd. ii CONFIDENTIAL

Table of Contents

LY AT a1 T A= @ /= AV = R 1
1.1, INtroduCtion 0 WINDIIVEYuveiiiieiiiie ettt e et ee s s et e e s e eba e e e s ebbeeesssbaeeesenes 1
D2 = T ot 1o 00 o SRR 2

1.2.1. The Chall@NGEoooeeeeiee ettt sne e 2
1.2.2. The WINDIIVEN SOIULTON ...oeeiiiieiiie ittt e s e s s eaae e e s e nnbaee s 2
G T o Tox 111" To | 3
1.4, WINDIIVEr BENEFILS ...ttt sttt e e s e abe e e s s saba e e e s ennreas 3
1.5, WINDIIVEr ATCIITECIUIE ...ttt s e e s e e e s e eaba e e e s e enreee s 4
1.6. What Platforms Does WinDriver SUPPOI?ccoeeereeieiienieeie e siesee e ee e 5
1.7. Limitations of the Different Evaluation VErSIONScccoeeeieeeiieeccieeeceee e 5
1.8. How Do | Develop My Driver With WINDIIVEI?cooiiiiiieneeeneeseeee e 6
1.8.1. ON WINAOWS AN LINUX ...uvveieiiiiiiie e et eereee e e st e s sesareessessseeessssbaeesssnnees 6
1.8.2. ON WINAOWS CE ...ttt sttt e s e e s s eaba e e e s eanenes 6
1.9. What Does the WinDriver TOOIKit INCIUAE?cooovuveieiieeeee e 6
1.9.1. WINDIIVEr IMOAUIES ...ttt et eaae e s bree e 7
RS T2 U 111 11 (= 7
1.9.3. SAMPIES ..t a et 8
1.10. Can | Distribute the Driver Created With WINDIIVEr?c.oooeeeeeiieecee e 8

2. UNderstanding DEVICE DITVENSccueoiiiieieeeeeesie ettt st ae e sseessesneesneeeens 9
2.1. DEVICE DIIVEr OVEIVIEWvveiiieiiiiee ettt ettt e s et e e s e eiaa e e s s e bb e e s s s sabaeeessnbaeessasreness 9
2.2. Classification of Drivers According to FUNCLONElILYccccoeieiieieniireeeeeeseee 9

2 W Y o o) 111 (o T ¢ A= £ 9
2.2.2. LAYEIEA DIIVELS ...ttt ae e sae et neesneenneas 10
2.2.3. MINIPOIT DIIVENS ...ttt sttt st et e e nneeneas 11
2.3. Classification of Drivers According to Operating SyStemsccccevvveereereseeseenenn 12
2.3. 1. WDIM DIIVELS ...ttt ettt e s e ettt e s s s bb e e s s eabae e e s sessaneesasnbeeessenbeenesaans 12
2.3.2. UNIX DEVICE DIIVELS ...oveeei ittt s ettt a s s tae e e s s evae e s s ssnbaee e s snnneeeeans 13
2.3.3. LINUX DEVICE DIIVELSvveieiieeiie ettt sttt e st e s baee s s ata e e s s enae e e s e araee s 13
2.4. The Entry PoINt Of the DIIVENccuoiieiieeeee e 13
2.5. Associating the Hardware With the DIIVENc.coeoiiiiiieeieeee e 14
2.6. Communicating With DITVEN'Sccoiiiiiiiieieee et 14

3. WINDIIVEr USB OVEIVIEWvveiiiiitiiie ettt e e eeaee e s s eatee e s e sabaeeassssaasessssaesessssbaeessssssansssanns 15
I R g 0o [(o1 o R (o L = T 15
3.2. WINDIIVEr USB BENEFITS ..ottt sar et e e srae e s s baee e s ssnaaeeeens 16
3.3. USB COMPONENES ...ttt st se e sab e e sbe e s e e e sseesareesaeesnneennneas 16
3.4. Data FIOW 1N USB DEVICESuuveiiiieiie ettt s s s ebae e s s eara e s s sbanea s 17
3.5. USB Data EXCNANGEcoieieiiiieiieeie ettt sttt sneeneeeneenneens 18
3.6. USB Data TranSfer TYPES ..cccueeeeieeeiieiesieerie e see e ssee e e see e saeesesseesseeessneesseesesneesseas 19

I I O 01 (o I I = = 19

3.6.2. 1SOCHIONOUS TTraNSFEYvviiiiceeie e 20

3.6.3. INEITUPL TIANSFEN ...t 20

N T STV S I =0 (= 21

3.7. USB CONFIQUIBLTONeieiiieiiiesieeie ettt saeese e b e ntesneeseeeeesneesaeeneas 21

R I A AT a1 A/ gl U I = TR 23

3.9. WINDriver USB ATCNITECIUIEcuveeeiceiiiee ettt et e st e s s bae e e s e saraeeeeanns 24

A, INSEATING WINDIIVEN ..ottt ettt e s e ae et e s seesseenaesneenteeneesneensennsans 26

© 2015 Jungo Connectivity Ltd. iii CONFIDENTIAL

Table of Contents

4.1, SystemM REQUITEMENLSc.eeiveeiieeiesieeieeeesteeeeseesteeseesseesteesesseesseesesseesseensesseensessensseenes 26
4.1.1. Windows System ReQUITEMENLScceieeieerieeeeseesieseeseesseeeesee e eeesneesnesnnens 26
4.1.2. Windows CE System ReQUITEMENEScceeiieieeieeie e seesie e 27
4.1.3. Linux System REQUITEMENEScccveeiiieiesieesie et 28

4.2. WIinDriver INStallation PrOCESScceiiiiieiiiinisieie e 28
4.2.1. Windows WinDriver Installation INSIrUCtioNSccocoveverinenieeiesese e 28
4.2.2. Windows CE WinDriver Installation INSIrUCtionsScooevererienieeneneneseneens 29

4.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms......... 29
4.2.2.2. Installing WinDriver CE when Developing Applications for Windows
CE COMPULETS ..ottt sttt sttt e sbe e sbe e e sane e sss e e s nnaeessaeesneeeans 30
4.2.2.3. Windows CE Installation NOEccoceeieieieneneseneseseeee e 31
4.2.3. Linux WinDriver Installation INSIFUCLIONScccocoverininienenieesese s 32
4.2.3.1. Preparing the System for Installationcccceeevieeieececcecece e, 32
4.2.3.2. INSEAIELTON ..o 33
4.2.3.3. Restricting Hardware ACCeSS 0N LiNUXcceevvvieereerieiieseeie e seeee s 35

4.3. Upgrading Your INSallationccccooeeiieie e 35

4.4, Checking Your INSallalioncccceiieiiiiececce e 35
4.4.1. Windows and Linux Installation Checkccccooeriiineniniininineeesesiesie 35
4.4.2. Windows CE Installation Check ..o 36

4.5, UNiNStalling WINDIIVEDcoueiecece ettt re et e et nnesnee s 36
4.5.1. Windows WinDriver Uninstall INStrUCtionscccovvevevenieneniesinenesiesie s 36
4.5.2. Linux WinDriver Uninstall INSIrUCtioNSccooeiiiiinenicenescseeee e 38

5. USING DIVEIWIZAIT ..ottt sttt sttt esne e aeeneesna e seenne e 39

5.1 AN OVEIVIBIW oottt sttt ettt bbb bttt e s et et e ne e 39

5.2. DriverWizard WalKtroughcooviieiieie et 40
5.2.1. Automatic Code GENEIALIONccverererierieriesie et 49

5.2.1.1. Generating the COUEcccveeeieeie et 49

5.2.1.2. The Generated USB C COUEcoereriinirininenee e 49

5.2.2. Compiling the Generated COUEcccveiereeieerie e 49

5.2.2.1. Windows and Windows CE Compilationcccceceveveeveeieveeseeceeseene, 49

5.2.2.2. LiNUX COMPIlELIONocveeieeeecieeie et 50

6. DEVEIOPING @ DIIVEN ...ttt st e st et e e esre e seeneesaeetesnaesreeneaneens 51

6.1. Using DriverWizard to Build a DeViCe DIIVESccccveieieeie et 51

6.2. Writing the Device Driver Without DriverWizardccccceveeveiieeneeie e 51
6.2.1. Include the Required WIinDriver FIlESccoovevieveeieceese e 51
6.2.2. WITE YOUI COUEooeieiiieiiietisieeieee ettt st s 52
6.2.3. Configure and Build YOUr COEccccveiuieieiiesiece e 53

6.3. Developing Your Driver on Windows CE Platformscccccccvveveeiesceesecce e 54

A= o UTe o110 I AV = S 55

7.1. User-Mode DEDUGGINGoovveieiieiieieeeseese ettt ae e e e e 55

4728 D T o 0o TN 1Y/ o g (o | 55
7.2.1. The wddebug gui ULHILYccvveieieee e 56

7.2.1.1. Running wddebug_gui for a Renamed Drivercccccoccvveevvvceseenieenen, 58

7.2.2. The wddebug ULIHTILYcccooeeiiiiesiee s 58

7.2.2.1. Console-Mode wddebug EXECULIONcccvevuveeevieeecee e 58

7.2.2.2. Windows CE GUI wddebug EXECULIONcccceeveerieeseeiiesieseece e 62

U IS = R I = 105 = £ RSP PRPRRPR 63
B L. OVEIVIBIW .ttt b bbbt et e e et e s b e b e st e ebe e bt et et et e bentenbenbe s 63

© 2015 Jungo Connectivity Ltd. iv CONFIDENTIAL

Table of Contents

8.2. USB CONtrol TIaNSFErS ...viiuiieiiiieiieieiee ettt st e sne e 64

8.2.1. USB Control Transfers OVEIVIEWccoeeerierieriesiesiesiesieseses e seeens 64

8.2.1.1. Control Data EXChaNQEcccovevieieerieiie e eie e 64

8.2.1.2. More About the Control Transfer ... 64

8.2.1.3. The Setup PaCKELccoeeeeceee e 65

8.2.1.4. USB Setup Packet FOrmMatccceeveieeiiieesecse et 65

8.2.1.5. Standard Device ReqUESt COOEScccceevureeereerie e 66

8.2.1.6. Setup Packet EXAMPIEcceeieeeeiiee e 66

8.2.2. Performing Control Transfers with WinDIiVErcccccvevevieeveeie e 67

8.2.2.1. Control Transfers with DriverWizardccoceevinieiineneneseseseeenes 67

8.2.2.2. Control Transfers with WinDriver APl ... 69

8.3. Functional USB Dafa TranSIEr'Sccccureiiririnieeesie ettt 70

8.3.1. Functional USB Data Transfers OVEIVIEWcccocevereneneneniesieeniesie s 70

8.3.2. SINgle-BIocKiNg TranSfEr'Sccovieeiiese e 70

8.3.2.1. Performing Single-Blocking Transfers with WinDrivercccccceue.... 70

8.3.3. Streaming Data TranSferscoccevieieceeceece e 70

8.3.3.1. Performing Streaming With WIiNDIIVErccccoevieveeiecieneece e 71

9. Dynamically Loading Y OUr DIIVEScccoiieiieie ettt sne s 73

9.1. Why Do You Need a Dynamically Loadable DIiVer?cccccevvveveveevesceeseece e 73

9.2. Windows Dynamic Driver LOadingcccccveieieeiicie et 73

9.2.1. The WAreg ULHILYc.eooeeeeeeeee et 73

0.2 1.1, OVEIVIBIW oottt sttt sttt ne et b nbe e 74

9.2.2. Dynamically Loading/Unloading windrvr6.sys INF Filesccccccevveveieennne. 75

9.3. Linux DynamicC Driver LOBINGccccevverieiieieeie e seesie e stee e eee e s sneenes 76

9.4. Windows CE Dynamic Driver LOadingcccccovveeieeiisieseee e 76

10. DiStribDULING Y OUE DIIVENocuiiiiieiecee sttt e st e e e ste e sneesseeeesnaesreeneeaneens 77

10.1. Getting a Valid WINDIIVEr LICENSEc.oceeiiieieieesecite et ste e see e e 77

10.2. Windows Driver DIStriBULION ... e 77

10.2.1. Preparing the Distribution Packageccoeeeeieeie i 78

10.2.2. Installing Y our Driver on the Target COMPULEcccoeveveeieerieeceeseerie e 78

10.3. Windows CE Driver DiStriDULIONccoceeiiiiiinine e 81

10.3.1. Distribution to New Windows CE PlatfOrmsccccevevinenineneneseseneenns 81

10.3.2. Distribution to Windows CE COMPULENScccceieeruerieereeriesieeseesseseesseessesneens 82

10.4. Linux Driver DIStriDULIONcccooiiiiieieiesiesieseses et 83

10.4.1. Preparing the Distribution Packageccoeeeeieeie i 83

10.4.1.1. Kernel Module COMPONENESccceeiueeieseerieeiesieesieeee e ste e seesreeneens 84

10.4.1.2. User-Mode Hardware-Control Application or Shared Object 85

10.4.2. Building and Installing the WinDriver Driver Modules on the Target 86
10.4.3. Installing the User-Mode Hardware-Control Application or

Shared ODJECLcooeeeece et e e e nennnen 87

11. Driver Installation — AAVANCEA ISSUEScceiireriiieierie ettt 88

111 WINAOWS INF FIES ...ttt 88

11.1.1. Why Should | Create an INF FIlE?cceeoviieieee e 88

11.1.2. How Do | Install an INF File When NO Driver EXistS?ccocovevivvenenenienne 89

11.1.3. How Do | Replace an Existing Driver Using the INF Fil€? ..o, 89

11.2. Renaming the WIinDriver Kernel DIIVESccoveiieieiiesecce et 90

11.2.1. WIindows Driver RENAMINGcccccoeieeiieiisiesieesieseesseeseseesseessesseesseessesneessens 91

11.2.2. LinuxX Driver RENAMINGcccveiieiierieeiieseeseeseseesreesseeeessee e seesseessessesneensens 93

© 2015 Jungo Connectivity Ltd. \Y CONFIDENTIAL

Table of Contents

11.3. Windows Digital Driver Signing and Certificationc.ccevvevivevevieiesieseese s 9
11,31, OVEIVIBIW ittt sttt b bbbt bt et e e e e e b e besbenbenneas 94
11.3.1.1. Authenticode Driver SIgNaLUIEccceveeeeeveeseeiesee e eseesee s e see e e 95

11.3.1.2. Windows Certification Programcccecceveevesieeseesecieeseesee e e 95

11.3.2. Driver Signing and Certification of WinDriver-Based Drivers...........ccooueen..... 96
11.3.2.1. HCK TSt NOLES ...cueceieieieieiesiesieee ettt s 97

11.4. Windows XP Embedded WinDriver COMPONENtcecvevierieeieesieeeesreeseeeseesseenenns 98
A. 64-Bit Operating SyStemMS SUPPOITcoceeiieiieieeieeee e e e et ae e e sae e e sreeresnee e 100
A.1. Supported 64-Bit ArchiteCtUIESccveieiiee e 100
A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms............... 100
A.3. 64-Bit and 32-Bit Dala TYPESccveiieieeeeseeste st ee st ae et 102
B. WinDriver USB HOSt APl REFEIENCEccoviiiiiiierieieeeee s 103
B.1. WD _DIIVEINGIMEcceoiiiieiece sttt sttt et e e s teeteeneesneeneeneesneenes 103
B.2. WinDriver USB (WDU) Library OVEIVIEWccccceeveiiieieeseee e 104
B.2.1. Caling Sequence for WinDriver USB ... 104
B.2.2. Upgrading from the WD _xxx USB API to the WDU_xxx APIccccenee. 107

B.3. USB User Callback FUNCLIONScooeiiiiiiisiesic et 109
B.3.1. WDU_ATTACH_CALLBACK ..ot 109
B.3.2. WDU_DETACH_CALLBACK ..ottt 110
B.3.3. WDU_POWER_CHANGE_CALLBACKccccotieetrereese s 111

B.4. USB FUNCLIONScueiiiiiieiiiesie ettt 111
2t Y1V 1 L ¥ o 1 SRR 112
B.4.2. WDU_SEINEITACE ...c.ecveieiieiisiiiieiee ettt 113
B.4.3. WDU_GEtDEVICEAUAN ...ttt st srenes 114
B.4.4. WDU_GetDeviCeReGISTYPrOPEITYcccceevieeieseesie e sieesieseese e sseenee e 115
B.4.5. WDU_GEDEVICEINTOecveeeeceeee ettt s 116
B.4.6. WDU_PUIDEVICEINTOoveeieeeeceee ettt 117
2R 1Y 1 O 1 o PSS 118
B.4.8. Single-Blocking Transfer FUNCLIONSccccovveeenieie et 119
B.4.8.1. WDU_TIaNSFEr ...cuoiveuieiiiiiieisiesie et sse e 119

B.4.8.2. WDU_HaltTranSfercccvveiiiiereiseseceesie et 121

B.4.8.3. WDU_TransferDefaultPipecccevveieeieieee e 122

B.4.8.4. WDU_TransSferBUIKccocviieeriininniseseeee e 122

B.4.8.5. WDU_TransferlSOCNc.cceevieiiecieseeie et 123

B.4.8.6. WDU_TransferInterruptccceeeereeieieeieeeeseesieseesieesee s e s 123

B.4.9. Streaming Data Transfer FUNCLIONSccocveiieie e 124
B.4.9.1. WDU_SIreamMOPENceiuiieiriirieieesteseeestesiesessesseseeessessesessessessenesseses 124

B.4.9.2. WDU_SIrEaMSEAITcvevveieeieiiiiesieeeesie st 126

B.4.9.3. WDU_SIreamREBdccccovviirieieiisieieesie et 127

B.4.9.4. WDU_SIrEAMWIILEeovveveieieii st s 128

B.4.9.5. WDU_SIreamFIUSNocooiiiiiiceseseeee e 129

B.4.9.6. WDU_SIreamMGELSIALUSccccvvverieiriinieinenieseeeseseeeseseeese s seeseese s 130

B.4.9.7. WDU_SIrEAMSIOP .veveveeverieirieniesieesiesieseseseesaesesseseesessessessesessessesessesens 131

B.4.9.8. WDU_SIrEaMCIOSEovvevirieieiisierieisiesie et 131

B.4.10. WDU_RESEIPIPEooviieiieieieiee ettt st et sne e 132
B.4.11. WDU_RESEIDEVICEceivereeiiiieieiesiesiees s seese sttt sse e e sse e 133
B.4.12. WDU_SeleCtiVESUSPENTooveeieeiicie ettt 134
B.4.13. WDU_WEKEUDooveieiiriisieieesiesie sttt sttt snessenes 135

© 2015 Jungo Connectivity Ltd. Vi CONFIDENTIAL

Table of Contents

B.4.14. WDU_GELANGIDSooueiieriieieiieiie ettt sre s 136
B.4.15. WDU_GEISIIINGDESCccuviueeiiiesiesiesiesiesieseesesssesse e sie e ssessesseessessssssssessesnes 137
B.5. USB Dat@ TYPES ...eeiiiiiiiitiie ettt sttt sttt e s s e sne e nsb e nnne e nsneesnnes 138
B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumerationccccovevrerenennns 138
B.5.2. USB SITUCLUIES ...ttt s 140
B.5.2.1. WDU_MATCH_TABLE SITUCLUrecooeiiriirenireee e 142
B.5.2.2. WDU_EVENT_TABLE SITUCIUIEcccoeiiriiririeeenienie s 142
B.5.2.3. WDU_DEVICE SIUCLUIEccueiuiiieiirie e 143
B.5.2.4. WDU_CONFIGURATION SIIUCIUIEcccevvirieriirinieiesiesie e 144
B.5.2.5. WDU_INTERFACE SIIUCIUIEccoiiiriirierieniesieseeeesee e 144
B.5.2.6. WDU_ALTERNATE_SETTING StrUCtUIecccoeeririeieienieseesierieee 145
B.5.2.7. WDU_DEVICE_DESCRIPTOR SIUCUIeccereriireeierienienie s 145
B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structurec.ccoceseeene 146
B.5.2.9. WDU_INTERFACE_DESCRIPTOR SIIUCIUIEccceeeeieierieniesienienne 146
B.5.2.10. WDU_ENDPOINT_DESCRIPTOR SIIUCIUIEccceeeeieierienierienienne 147
B.5.2.11. WDU_PIPE_INFO SITUCIUIEcoveiirieriinie e 147

B.6. General WD _XXX FUNCHIONSccecoiiiieiicie ettt 148
B.6.1. Calling Sequence WinDriver — General USEcccecevvveveecieseeseciee e 148
B.6.2. WD _OPEN() +ouververeeiinierienieeieiie e sie e st s e st st sbe s et e ste st s snesneenes 149
B.6.3. WD _VEISION() .eeeeiirieriesiiniesisee ettt sttt sttt naesnenae s 150
B.6.4. WD _ClOSE() .everveeueenieriesiesiesiesieeieeee et sie st sse s b st sae s e nae st s e 151
B.6.5. WD _DEDUG() -eonveeereerierieniininiesie ettt sttt 152
B.6.6. WD _DeEDUGATAA() ..eoveereeieiirierie sttt 153
B.6.7. WD_DebugDUMP() ..veeeeeeieeieiieite ettt es et ae e enesnee e 155
B.6.8. WD _SIEEP() .eeveeeeeereisiesiesiiseeie ettt sttt st nbenne s 156
B.6.9. WD _LICENSE() .ouveverviriiriiriirieiie et sttt ettt sttt st e s 157
B.7. User-Mode Utility FUNCLIONSccooiuieiece ettt 159
BL7.1. SEBE2SIE ..ttt ettt bbbttt a e s 159
B.7.2. QBLL0OS LY ettt e bbb 160
B.7.3. TRrEAASIAITceeieiieeeee e bbb 161
B.7.4. TRrEAOWAIT ...t e 162
B.7.5. OSEVENICIEALE ... 163
B.7.6. OSEVENLCIOSEcoiviiiiiiiirieeieie ettt bbb na et nae st 164
B.7.7. OSEVENIWAILoceevviiiiiiieieiesie ettt 165
B.7.8. OSEVENISIGNEccoeeiiceceee e e 166
B.7.9. OSEVENTRESELooveiiiiiieieiieiese sttt 167
B.7.10. OSMULEXCIEELEccceiieeeiieeieesiee e n e sneesneesnneeneas 168
B.7.11. OSMULEXCIOSEcviiviriiiiiniisiinieie ettt st sttt eesae e nnas 169
B.7.12. OSMULEXLOCKcouiiuiiiiiisiesiisie sttt 170
B.7.13. OSMULEXUNIOCKc.eeiiiiiieisiisiisiiniieie et st 171
B.7.14. PrintDDGMESSA0Eecuveiiieieiiecieeie ettt ste et sae et e e ne e 172
B.7.15. WD _LOGSEAIcoeiuieririieieieiiesie sttt sttt 173
B.7.16. WD _LOGSIOP ..eeiverueriieieieniesie sttt st st sttt st sbe s ens 174
B.7.17. WD _LOGAGD ..ottt sttt e 174
B.8. WINDIiver StalUS COUESccovviriiriirierieniesienieeeee et sttt st 175
B.8.1. INtrOTUCTION ...viiiiiieieiie ettt e 175
B.8.2. Status Codes Returned by WINDIIVEScccoevieiiiieceesieeee e 175
B.8.3. Status Codes Returned by USBDccccoivievieieceseee e 176

© 2015 Jungo Connectivity Ltd. vii CONFIDENTIAL

Table of Contents

C. Troubleshooting and SUPPOITccveiieiieiieriesiee s ese e e te e sreeae e e saeeresnnesreenne e 180
D. Evaluation Version LIMITAHiONScccveeiiiiiiiiee e ctie et etee e sves s esveessaeesssnaessveessnreessnree s 181
D.1. Windows WinDriver Evaluation Limitationsccceuveiiieiiiieeiieeeceeccieesevee e 181
D.2. Windows CE WinDriver Evaluation Limitationsccceeveeieeeeiciee e s 181
D.3. Linux WinDriver Evaluation LimMitationScccoveiiiriiiiee et sveeesvee s 182
E. PUrChasing WINDIIVEDccooiiiieieeie ettt sttt s e e ee s e s seeneeneesneeseaneens 183
F. Distributing Your Driver — Legal ISSUESc.ccceiieiieeiesiesie e seeste e see st see e ae s 184
G. Additional DOCUMENTALIONeeeiiveeiiiieiciie e ctiecereeeste e e e s sbe e s sbe e s sbee s sbeessabessssbessssbesssneeeens 185

© 2015 Jungo Connectivity Ltd. viii CONFIDENTIAL

List of Figures

1.1, WINDIIVEr ATChITECIUIEoueeieei ettt et ne e 4
2.1, MONOITNIC DIIVEFS ...ttt sttt et eemeesbe e teeneesseeseeneesreeseenee e 10
2.2, LAYEIEA DIIVELS ..ottt sttt e st ee st e sbe e s e e st e s seeseeneesreenaeeneesneensens 11
PG T |V 1 g TT oo B Y PR 12
TNt I 0 = B e oo 1R 18
T U B 1 = SRR RSRN 19
3.3. DEVICE DESCIIPLOIS ...ueieieieeieeieesieeieeee st e et e st ee st e sbeeeesseesseenseeneesseeneesneesseeseeneesseensesneenns 22
3.4. WInDriver USB ATChITECIUIEcc.ooiiiieeee ettt 25
5.1. Create a NeW DIiVEr PrOJECEooiiiieecieee ettt 40
5.2, SEIECE YOUI DEVICE ..ottt sttt ettt sttt enbe et e sneense e e e sneeneas 41
5.3. DriverWizard INF File INfOrMaLioncooeeieiiiieeieeesee e 42
5.4. DriverWizard Multi-Interface INF File Information — Specific Interfaceccccoveeeeeee. 43
5.5. DriverWizard Multi-Interface INF File Information — Composite Devicec.cccceueee.e. 44
5.6. SElECt DEVICE INLEITACEoceeieeeeeeeee et sre e 45
5.7. USB CONLrol TIANSFEI'S ...cviiiiiieiieie ettt st st ne e be e e sneeseeenee e 46
TR T I = o 0 (o T T o= PR 47
LS Y L (= (o 1= T 47
5.10. Code GEeNneration OPLIONSc.eeieeeeieerieiiereere e steesteseesseesteeseesseeseesneesseesseeeesseessessesseens 48
7.1, Start DEDUG MONITOLc.eiiiiieeee et sreenneeneens 56
72D o 8o I o1 o o 1SS 57
7.3. wddebug Windows CE Start LOg MESSAJEccceeeerierierienieeiesiee e seesee e see e seesseessesneens 62
7.4. wddebug Windows CE StOP LOG MESSAQEc.ceiuereirieeiieiisieesie e s 62
8.1. USB Dala EXCNANGEeoiuieieiieiiie ittt st sbe et e st esreesesneesaeeeeenee e 63
8.2. USB REa0 AN WIITE ...ttt sttt sne e e e nrean 65
8.3. CUSLOM REGUESL ...ttt ettt e s ae e et e e sae e et e e sae e e abeesaeeebeesaeeeneennnas 68
S (= o 1= I R SSRRRS 68
8.5. USB REQUESE LOQeiieieiiiieiee ettt sttt sttt sae e b e e aeeene e smneeneeenes 69
B.1. WinDriver USB Calling SEOUENCEc.coeeiieeieiierieeie et see s see e seeeeesnee e 106
B.2. WINDIIVEr USB SHUCLUIEScceiiiieiieeieeieesie e st ee et te e sse e e eneesseesseeneesneeneeas 141
B.3. WINDriver-APl Calling SEQUENCEocoeiierieeiereesiee ettt neas 148

© 2015 Jungo Connectivity Ltd. ¢ CONFIDENTIAL

Chapter 1
WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic steps of creating your
driver.

This manual outlines WinDriver's support for USB devices.

WinDriver also supports development for PCI/PCMCIA/CardBus/I SA/EISA/
CompactPCI/PCI Express devices. For detailed information regarding WinDriver's
support for these buses, please refer to the WinDriver product page on our web site
(http://www.jungo.com/st/products/windriver/) and to the WinDriver PCl Manual, which
isavailable online at http://www.jungo.com/st/support/windriver/.

1.1. Introduction to WinDriver

WinDriver is adevelopment toolkit that dramatically simplifies the difficult task of creating
device drivers and hardware access applications. WinDriver includes awizard and code
generation features that automatically detect your hardware and generate the driver to access it
from your application. The driver and application you develop using WinDriver is source code
compatible across all supported operating systems[1.6]. The driver is binary compatible across
Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/
XP.

WinDriver provides a complete solution for creating high-performance drivers.

Don't let the size of this manual fool you. WinDriver makes developing device drivers an

easy task that takes hoursinstead of months. Most of this manual deals with the features that
WinDriver offers to the advanced user. However, most developers will find that reading this
chapter and glancing through the DriverWizard and function reference chaptersis all they need to
successfully write their driver.

WinDriver supports development for all USB chipsets.

Visit Jungo's web site at http://www.jungo.com for the latest news about WinDriver and other
driver development tools that Jungo offers.

© 2015 Jungo Connectivity Ltd. 1 CONFIDENTIAL

http://www.jungo.com/st/products/windriver/
http://www.jungo.com/st/support/windriver/
http://www.jungo.com

Chapter 1. WinDriver Overview

1.2. Background

1.2.1. The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot access
hardware directly from the application level (user mode), where development work is usually
done. Hardware can only be accessed from within the operating system itself (kernel mode or
Ring-0), utilizing software modules called device drivers. In order to access a custom hardware
device from the application level, a programmer must do the following:

Learn the internals of the operating system he is working on.

Learn how to write adevice driver.

Learn new tools for devel oping/debugging in kernel mode (WDK, ETK, DDI/DKI).
Write the kernel-mode device driver that does the basic hardware input/output.

Write the application in user mode that accesses the hardware through the device driver written
in kernel mode.

Repeat the first four steps for each new operating system on which the code should run.

1.2.2. The WinDriver Solution

Easy Development: WinDriver enables Windows, Windows CE, and Linux programmers to
create USB based device driversin an extremely short time. WinDriver allows you to create
your driver in the familiar user-mode environment, using MS Visual Studio, MS eMbedded
Visual C++, MS Platform Builder C++, GCC, Windows GCC, or any other appropriate
compiler or development environment. Y ou do not need to have any device driver knowledge,
nor do you have to be familiar with operating system internals, kernel programming, the WDK,
ETK or DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows 8.1/Server 2012
R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/X P, Embedded Windows
8.1/8/7/XP, Windows CE (a.k.a. Windows Embedded Compact) 4.x—8.x (including Windows
Mobile), and Linux. In other words — write it once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is agraphica diagnosticstool that lets you view
the device's resources and test the communication with the hardware with just afew mouse
clicks, before writing asingle line of code. Once the device is operating to your satisfaction,
DriverWizard creates the skeletal driver source code, giving access functionsto al the
resources on the hardware.

K ernel-Mode Performance: WinDriver's APl is optimized for performance.

© 2015 Jungo Connectivity Ltd. 2 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.3. Conclusion

Using WinDriver, a developer need only do the following to create an application that accesses
the custom hardware:

» Start DriverWizard and detect the hardware and its resources.

» Automatically generate the device driver code from within DriverWizard, or use one of the
WinDriver samples as the basis for the application.

» Modify the user-mode application, as needed, using the generated/sample functions to
implement the desired functionality for your application.

Y our hardware access application will run on all the supported platforms[1.6] — just recompile
the code for the target platform. The code is binary compatible across Windows 8.1/Server 2012

R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/XP platforms; thereisno
need to rebuild the code when porting it across binary-compatible platforms.

1.4. WinDriver Benefits

» Easy user-mode driver development.

* Friendly DriverWizard allows hardware diagnostics without writing a single line of code.
» Automatically generates the driver code for the project in C, Visual Basic .NET, or C#.

» Supports any USB device, regardless of manufacturer.

» Applications are binary compatible across Windows 8.1/Server 2012 R2/8/Server 2012/7/
Server 2008 R2/VistalServer 2008/Server 2003/XP.

» Applications are source code compatible across all supported operating systems — Windows
8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/XP,
Embedded Windows 8.1/8/7/X P, Windows CE (ak.a. Windows Embedded Compact) 4.x—8.x
(including Windows Mobile), and Linux.

 Can be used with common development environments, including MS Visual Studio, MS
eMbedded Visual C++, MS Platform Builder C++, GCC, Windows GCC, or any other
appropriate compiler/environment.

* NoWDK, ETK, DDI or any system-level programming knowledge required.

* Supports multiple CPUs.

* Includes dynamic driver loader.

» Comprehensive documentation and help files.

© 2015 Jungo Connectivity Ltd. 3 CONFIDENTIAL

Chapter 1. WinDriver Overview

Detailed examplesin C, Visual Basic .NET, or C#.

Two months of free technical support.

No run-time fees or royalties.

1.5. WinDriver Architecture

Figurel.1. WinDriver Architecture

Your Application / DIl / Shared Object

Your Driver Code

A A

Y

WinDriver .NET Wrapper API
(wdapi_dotnet DLL)

A
Y Y

High-level WinDriver API
(wdapi DLL / shared object)

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvré.sys/.dll/.of ko)

[4

Py
7
[mnl
—
=
-

=

B

| =]

"l,:
197)
o]
[

Your Hardware

D Components You Write
O] WinDriver Components

l]]] 0S Components

WinDriver Windows drivers are compliant with Microsoft's Windows Certification Program

Kernel Mode

© 2015 Jungo Connectivity Ltd. 4

CONFIDENTIAL

Chapter 1. WinDriver Overview

For hardware access, your application calls one of the WinDriver user-mode functions. The user-
mode function calls the WinDriver kernel, which accesses the hardware for you through the
native calls of the operating system.

1.6. What Platforms Does WinDriver Support?

WinDriver supports the following operating systems:

» Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/Vista/Server 2008/ Server 2003/
XP and Embedded Windows 8.1/8/7/XP — henceforth collectively: Windows

» Windows CE (a.k.a. Windows Embedded Compact) 4.x—8.x (including Windows Mobile) —
henceforth collectively: Windows CE

e Linux

The same source code will run on all supported platforms — simply recompileit for the target
platform. The source code is binary compatible across Windows 8.1/Server 2012 R2/8/Server
2012/7/Server 2008 R2/VistalServer 2008/Server 2003/XP; WinDriver executables can be ported
among the binary-compatible platforms without recompilation.

Even if your code is meant only for one of the supported operating systems, using WinDriver
will give you the flexibility to move your driver to another operating system in the future without
needing to change your code.

1.7. Limitations of the Different Evaluation
Versions

All the evaluation versions of the WinDriver USB Host toolkit are full featured. No functions are
limited or crippled in any way. The evaluation version of WinDriver varies from the registered
version in the following ways:

» Each time WinDriver is activated, an Unregistered message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* IntheLinux and Windows CE versions, the driver will remain operational for 60 minutes, after
which time it must be restarted.

» The Windows evaluation version expires 30 days from the date of installation.

For more details please refer to Appendix D.

© 2015 Jungo Connectivity Ltd. 5 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.8. How Do | Develop My Driver with
WinDriver?

1.8.1. On Windows and Linux

1. Start DriverWizard and use it to diagnose your hardware — see details in Chapter 5.

2. Let DriverWizard generate skeletal code for your driver, or use one of the WinDriver samples
asthe basis for your driver application.

3. Modify the generated/sample code to suit your application’s needs.

4. Run and debug your driver.

The code generated by DriverWizard is a diagnostics program that contains functions that
perform data transfers on the device's pipes, send requests to the control pipe, change the
active alternate setting, reset pipes, and more.

1.8.2. On Windows CE

1. Plug your hardware into a Windows host machine.

2. Diagnose your hardware using DriverWizard.

3. Let DriverWizard generate your driver's skeletal code.

4. Modify this code, using MS eMbedded Visual C++, to meet your specific needs. If you
are using M S Platform Builder, activate it and insert the generated * .pbp into your project

solution.

5. Test your driver on the target embedded Windows CE platorm.

1.9. What Does the WinDriver Toolkit Include?

A printed version of this manual

Two months of free technical support (Phone/Fax/Email)

WinDriver modules

Utilities

Samples

© 2015 Jungo Connectivity Ltd. 6 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.9.1. WinDriver Modules

» WinDriver (WinDriver/include) — the general purpose hardware access toolkit. The main
fileshereare

« windrvr.h: Declarations and definitions of WinDriver's basic API.

« wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU) library, which
provides convenient wrapper USB APIs.

« windrvr_int_thread.h: Declarations of convenient wrapper functions to simplify interrupt
handling.

- windrvr_events.h: Declarations of APIsfor handling Plug-and-Play and power management
events.

=« utils.h: Declarations of general utility functions.

« status strings.h: Declarations of API for converting WinDriver status codes to descriptive
error strings.

» DriverWizard (WinDriver/wizard/wdwizard) — a graphical application that diagnoses
your hardware and enables you to easily generate code for your driver (refer to Chapter 5 for
details).

» Debug Monitor — a debugging tool that collects information about your driver asit runs. This
tool is available both as afully graphical application — WinDriver/util/wddebug_gui — and
as a console-mode application — WinDriver/util/wddebug. The console-mode version also
supports GUI execution on Windows CE platforms that don't have a command-line prompt.
For details regarding the Debug Monitor, refer to Section 7.2.

* WinDriver distribution package (WinDriver/redist) — the files you include in the driver
distribution to customers.

» Thismanua — the full WinDriver manual (this document), in different formats, can be found
under the WinDriver/docs directory.

1.9.2. Utilities

* usb_diag.exe (WinDriver/util/usb_diag.exe) — enables the user to view the resources of
connected USB devices and communicate with the devices — transfer data to/from the device,
set the active aternate setting, reset pipes, etc.

On Windows the program identifies all devices that have been registered to work with
WinDriver using an INF file. On the other supported operating systems the program identifies
all USB devices connected to the target platform.

* pci_dump.exe (WinDriver/util/pci_dump.exe) — used to obtain a dump of the PCI
configuration registers of the installed PCI cards.

© 2015 Jungo Connectivity Ltd. 7 CONFIDENTIAL

Chapter 1. WinDriver Overview

» pci_scan.exe (WinDriver/util/pci_scan.exe) — used to obtain alist of the PCI cardsinstalled
and the resources allocated for each card.

» pcmcia_diag.exe (WinDriver/util/pcmcia_diag.exe) — used for reading/writing PCMCIA
attribute space, accessing PCMCIA 1/0 and memory ranges and handling PCM CIA interrupts.

» pcmcia_scan.exe (WinDriver/util/pcmcia_scan.exe) — used to obtain alist of the PCMCIA
cards installed and the resources allocated for each card.

1.9.3. Samples

WinDriver includes a variety of samples that demonstrate how to use WinDriver's API to
communicate with your device and perform various driver tasks.

» C samples: found under the WinDriver/samples directory.
These samples also include the source code for the utilities listed above [1.9.2].

* .NET C#and Visual Basic .NET samples (Windows): found under the WinDriver\cshar p.net
and WinDriver\vb.net directories (respectively).

1.10. Can | Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a devel opment toolkit, and any device driver created using
WinDriver may be distributed, royalties free, in as many copies as you wish. See the license
agreement at (WinDriver/docswd_license.pdf) for more details.

© 2015 Jungo Connectivity Ltd. 8 CONFIDENTIAL

Chapter 2
Understanding Device Drivers

This chapter provides you with a general introduction to device drivers and takes you through the
structural elements of adevice driver.

Using WinDriver, you do not need to familiarize yourself with the internal workings of
driver development. As explained in Chapter 1 of the manual, WinDriver enables you to
communicate with your hardware and develop adriver for your device from the user mode,
using only WinDriver's ssimple APIs, without any need for driver or kernel development
knowledge.

2.1. Device Driver Overview

Device drivers are the software segments that provides an interface between the operating system
and the specific hardware devices such as terminals, disks, tape drives, video cards and network
media. The device driver brings the device into and out of service, sets hardware parametersin the
device, transmits data from the kernel to the device, receives datafrom the device and passes it
back to the kernel, and handles device errors.

A driver acts like atrangator between the device and programs that use the device. Each device
has its own set of specialized commands that only its driver knows. In contrast, most programs
access devices by using generic commands. The driver, therefore, accepts generic commands
from a program and then translates them into specialized commands for the device.

2.2. Classification of Drivers According to
Functionality

There are numerous driver types, differing in their functionality. This subsection briefly describes
three of the most common driver types.

2.2.1. Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to support a
hardware device. A monolithic driver is accessed by one or more user applications, and directly
drives a hardware device. The driver communicates with the application through 1/O control
commands (IOCTLs) and drives the hardware using calls to the different WDK, ETK, DDI/DKI
functions.

© 2015 Jungo Connectivity Ltd. 9 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure2.1. Monolithic Drivers

Application

i Uszer Mode
Kemnel Mode

HW

-

Monolithic drivers are supported in all operating systems including all Windows platforms and all
Unix platforms.

2.2.2. Layered Drivers

Layered drivers are device drivers that are part of a stack of device drivers that together process
an 1/0 request. An example of alayered driver isadriver that intercepts cals to the disk and
encrypts/decrypts al data being transferred to/from the disk. In this example, a driver would be
hooked on to the top of the existing driver and would only do the encryption/decryption.

Layered drivers are sometimes also known asfilter drivers, and are supported in all operating
systems including all Windows platforms and all Unix platforms.

© 2015 Jungo Connectivity Ltd. 10 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure2.2. Layered Drivers

Application

il

2.2.3. Miniport Drivers

A Miniport driver is an add-on to aclass driver that supports miniport drivers. It is used so the
miniport driver does not have to implement all of the functions required of adriver for that class.
The class driver provides the basic class functionality for the miniport driver.

A classdriver isadriver that supports a group of devices of common functionality, such as all
HID devices or al network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in the
Windows XP and higher operating systems.

© 2015 Jungo Connectivity Ltd. 11 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure 2.3. Miniport Drivers

Application
Uzer Mode
Kernel Mode
Q\\\\\\\\\\\\\\\\\‘Q
E WNDIS Framewoarls s
%\\\\}\T\\T\\Tx\\\ﬁ
\ Miniport
\ Ciriver
LT T
DO
N)
HW
i

The Windows XP and higher operating systems provide several driver classes (called ports)

that handle the common functionality of their class. It isthen up to the user to add only the
functionality that has to do with the inner workings of the specific hardware. The NDIS miniport
driver is one example of such adriver. The NDIS miniport framework is used to create network
drivers that hook up to Windows's communication stacks, and are therefore accessible to common
communication calls used by applications. The Windows kernel provides drivers for the various
communication stacks and other code that is common to communication cards. Due to the NDIS
framework, the network card developer does not have to write all of this code, only the code that
is specific to the network card he is developing.

2.3. Classification of Drivers According to
Operating Systems

2.3.1. WDM Drivers

Windows Driver Model (WDM) drivers are kernel-mode drivers within the Windows operating
systems. WDM works by channeling some of the work of the device driver into portions of

the code that are integrated into the operating system. These portions of code handle al of the
low-level buffer management, including DMA and Plug-and-Play (Pnp) device enumeration.
WDM drivers are PnP drivers that support power management protocols, and include monolithic
drivers, layered drivers and miniport drivers.

© 2015 Jungo Connectivity Ltd. 12 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

2.3.2. Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character (char)
devices, block devices and network devices. Drivers that implement these devices are
correspondingly known as char drivers, block drivers or network drivers. Under Unix, drivers
are code units linked into the kernel that run in privileged kernel mode. Generally, driver code
runs on behalf of a user-mode application. Accessto Unix drivers from user-mode applicationsis
provided viathe file system. In other words, devices appear to the applications as special device
filesthat can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can be perceived
as aone-layer layered driver.

2.3.3. Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model [2.3.2]. In addition, Linux
introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, asin Unix, but also has a
block-oriented interface that is invisible to the user or application.

Traditionally, under Unix, device drivers are linked with the kernel, and the system is brought
down and restarted after installing a new driver. Linux introduces the concept of a dynamically
loadable driver called amodule. Linux modules can be loaded or removed dynamically without
requiring the system to be shut down. A Linux driver can be written so that it is statically linked
or written in amodular form that allows it to be dynamically loaded. This makes Linux memory
usage very efficient because modules can be written to probe for their own hardware and unload
themselvesif they cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic drivers.

2.4. The Entry Point of the Driver

Every device driver must have one main entry point, like the mai n() function in a C console
application. Thisentry pointiscaled Dri ver Ent ry() in Windowsandi ni t _nodul e() in
Linux. When the operating system loads the device driver, this driver entry procedure is called.

There is some global initialization that every driver needs to perform only once when

it isloaded for the first time. This global initialization is the responsibility of the

Driver Entry()/i nit _nodul e() routine. The entry function also registers which driver
callbacks will be called by the operating system. These driver callbacks are operating system
requests for services from the driver. In Windows, these callbacks are called dispatch routines,
and in Linux they are called file operations. Each registered callback is called by the operating
system as aresult of some criteria, such as disconnection of hardware, for example.

© 2015 Jungo Connectivity Ltd. 13 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

2.5. Associating the Hardware with the Driver

Operating systems differ in the ways they associate a device with a specific driver.

In Windows, the hardware-driver association is performed viaan INF file, which registers the
device to work with the driver. This association is performed before the Dr i ver Ent r y() routine
is caled. The operating system recognizes the device, checks its database to identify which INF
fileis associated with the device, and according to the INF file, calls the driver's entry point.

In Linux, the hardware-driver association is defined in the driver'si ni t _nmodul e() routine. This
routine includes a callback that indicates which hardware the driver is designated to handle. The
operating system calls the driver's entry point, based on the definition in the code.

2.6. Communicating with Drivers

Communi cation between a user-mode application and the driver that drives the hardware,
isimplemented differently for each operating system, using the custom OS Application
Programming Interfaces (APIs).

On Windows, Windows CE, and Linux, the application can use the OS file-access API to open
ahandle to the driver (e.g., using the Windows Cr eat eFi | e() function or using the Linux
open() function), and then read and write from/to the device by passing the handle to the relevant
OS file-access functions (e.g., the Windows ReadFi | e() and Wi t eFi | e() functions, or the
Linux read() and w i t e() functions).

The application sends requests to the driver vial/O control (IOCTL) calls, using the custom OS
APIs provided for this purpose (e.g., the Windows Devi cel oCont r ol () function, or the Linux
i oct | () function).

The data passed between the driver and the application viathe IOCTL callsis encapsulated using
custom OS mechanisms. For example, on Windows the data is passed via an 1/0 Request Packet
(IRP) structure, and is encapsulated by the I/O Manager.

© 2015 Jungo Connectivity Ltd. 14 CONFIDENTIAL

Chapter 3
WinDriver USB Overview

This chapter explores the basic characteristics of the Universal Serial Bus (USB) and introduces
WinDriver USB's features and architecture.

The references to the WinDriver USB toolkit in this chapter relate to the standard
WinDriver USB toolkit for development of USB host drivers.

"
1

3.1. Introduction to USB

USB (Universal Serial Bus) is an industry standard extension to the PC architecture for

attaching peripherals to the computer. It was originally developed in 1995 by leading PC and
telecommunication industry companies, such as Intel, Compag, Microsoft and NEC. USB was
developed to meet several needs, among them the needs for an inexpensive and widespread
connectivity solution for peripheralsin general and for computer telephony integration in
particular, an easy-to-use and flexible method of reconfiguring the PC, and a solution for adding a
large number of external peripherals. The USB standard meets these needs.

The USB specification allows for the connection of a maximum of 127 peripheral devices
(including hubs) to the system, either on the same port or on different ports.

USB also supports Plug-and-Play installation and hot swapping. The USB 1.1 standard supports
both isochronous and asynchronous data transfers and has dual speed data transfer: 1.5 Mb/s
(megabits per second) for low-speed USB devices and 12 Mb/sfor full-speed USB devices
(much faster than the original seria port). Cables connecting the device to the PC can be up to
five meters (16.4 feet) long. USB includes built-in power distribution for low power devices and
can provide limited power (up to 500 mA of current) to devices attached on the bus.

The USB 2.0 standard supports a signalling rate of 480 Mb/s, known as "high-speed’, which is 40
times faster than the USB 1.1 full-speed transfer rate.

USB 2.0isfully forward- and backward-compatible with USB 1.1 and uses existing cables and
connectors.

USB 2.0 supports connections with PC peripherals that provide expanded functionality and
require wider bandwidth. In addition, it can handle alarger number of peripherals ssmultaneously.
USB 2.0 enhances the user's experience of many applications, including interactive gaming,
broadband Internet access, desktop and Web publishing, Internet services and conferencing.

Because of its benefits (described also in Section 3.2 below), USB is currently enjoying broad
market acceptance.

© 2015 Jungo Connectivity Ltd. 15 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

3.2. WinDriver USB Benefits

This section describes the main benefits of the USB standard and the WinDriver USB toolkit,
which supports this standard:

External connection, maximizing ease of use

Self identifying peripherals supporting automatic mapping of function to driver and
configuration

Dynamically attachable and re-configurable peripherals

Suitable for device bandwidths ranging from afew Kb/s to hundreds of Mb/s

Supports isochronous as well as asynchronous transfer types over the same set of wires
Supports simultaneous operation of many devices (multiple connections)

Supports a data transfer rate of up to 480 Mb/s (high-speed) for USB 2.0 (for the operating
systems that officially support this standard) and up to 12 Mb/s (full-speed) for USB 1.1

Guaranteed bandwidth and low |atencies; appropriate for telephony, audio, etc. (isochronous
transfer may use almost the entire bus bandwidth)

Flexibility: supports awide range of packet sizes and awide range of data transfer rates

Robustness: built-in error handling mechanism and dynamic insertion and removal of devices
with no delay observed by the user

Synergy with PC industry; Uses commodity technologies

Optimized for integration in peripheral and host hardware

Low-cost implementation, therefore suitable for development of low-cost peripherals
Low-cost cables and connectors

Built-in power management and distribution

Specific library support for custom USB HID devices

3.3. USB Components

The Universal Serial Bus (USB) consists of the following primary components:

USB Host: The USB host platform is where the USB host controller isinstalled and where the
client software/device driver runs. The USB Host Controller is the interface between the host
and the USB peripherals. The host is responsible for detecting the insertion and removal of

© 2015 Jungo Connectivity Ltd. 16 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

USB devices, managing the control and data flow between the host and the devices, providing
power to attached devices and more.

* USB Hub: A USB device that allows multiple USB devicesto attach to asingle USB port on
aUSB host. Hubs on the back plane of the hosts are called root hubs. Other hubs are called
external hubs.

» USB Function: A USB device that can transmit or receive data or control information over the
bus and that provides afunction. A function is typically implemented as a separate peripheral
device that plugsinto aport on ahub using a cable. However, it is also possible to create a
compound device, which is a physical package that implements multiple functions and an
embedded hub with asingle USB cable. A compound device appears to the host as a hub with
one or more non-removable USB devices, which may have ports to support the connection of
external devices.

3.4. Data Flow in USB Devices

During the operation of a USB device, the host can initiate aflow of data between the client
software and the device.

Data can be transferred between the host and only one device at atime (peer to peer
communication). However, two hosts cannot communicate directly, nor can two USB devices
(with the exception of On-The-Go (OTG) devices, where one device acts as the master (host) and
the other asthe dave.)

The data on the USB bus is transferred via pipes that run between software memory buffers on the
host and endpoints on the device.

Data flow on the USB busis half-duplex, i.e., data can be transmitted only in one direction at a
given time.

An endpoint isauniquely identifiable entity on a USB device, which is the source or terminus of
the data that flows from or to the device. Each USB device, logical or physical, has a collection of
independent endpoints. The three USB speeds (low, full and high) all support one bi-directional
control endpoint (endpoint zero) and 15 unidirectional endpoints. Each unidirectional endpoint
can be used for either inbound or outbound transfers, so theoretically there are 30 supported
endpoints.

Each endpoint has the following attributes: bus access frequency, bandwidth requirement,
endpoint number, error handling mechanism, maximum packet size that can be transmitted or
received, transfer type and direction (into or out of the device).

© 2015 Jungo Connectivity Ltd. 17 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

Figure 3.1. USB Endpoints

Endpoints
b e ——————
e B ————— g
________________ Memory Hosts
USB » Buffers
Device \
o ——————— >
N
Y
\
Y
3
h Y
3
b Data Pipes/
\ _ _ DataPipes

Data Transfer

A pipeisalogical component that represents an association between an endpoint on the USB
device and software on the host. Datais moved to and from a device through a pipe. A pipe can
be either a stream pipe or a message pipe, depending on the type of data transfer used in the pipe.
Stream pipes handle interrupt, bulk and isochronous transfers, while message pipes support the
control transfer type. The different USB transfer types are discussed below [3.6].

3.5. USB Data Exchange

The USB standard supports two kinds of data exchange between a host and a device: functional
data exchange and control exchange.

» Functional Data Exchangeis used to move data to and from the device. There are three types
of USB datatransfers: Bulk, Interrupt and Isochronous.

» Control Exchangeis used to determine device identification and configuration regquirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

© 2015 Jungo Connectivity Ltd. 18 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

Control exchange takes place via a control pipe — the default pipe 0, which always exists. The
control transfer consists of a setup stage (in which a setup packet is sent from the host to the
device), an optional data stage and a status stage.

Figure 3.2 below depicts a USB device with one bi-directional control pipe (endpoint) and two
functional datatransfer pipes (endpoints), asidentified by WinDriver's DriverWizard utility
(discussed in Chapter 5).

Figure 3.2. USB Pipes

|Active Projects & X |

Alternate Setting 2: Number of Endpoints 2

a Cypress Semiconductor Corp. - Product ID: 1003 | 2 I

[=}- Cypress Semiconductor Corp, - Product ID: 1003
Interface 0
= ;\Ih;ranahe Setting 0 Pipe Name Pipe Type Information
e
Alternate Setting 2
::E;;:E g:x;g i 2 pipe0x82 Buk direction: in, packet size: 512
Alternate Setting 5
Alternate Setﬁng 5 3 pipe Ox6 Bulk direction: out, packet size: 512
Read [Write

More information on how to implement the control transfer by sending setup packets can be
found in Section 8.2.

3.6. USB Data Transfer Types

The USB device (function) communicates with the host by transferring data through a pipe
between a memory buffer on the host and an endpoint on the device. USB supports four different
transfer types. A typeis selected for a specific endpoint according to the requirements of the
device and the software. The transfer type of a specific endpoint is determined in the endpoint
descriptor.

The USB specification provides for the following data transfer types:

3.6.1. Control Transfer

Control Transfer is mainly intended to support configuration, command and status operations
between the software on the host and the device.

This transfer type is used for low-, full- and high-speed devices.

Each USB device has at least one control pipe (default pipe), which provides access to the
configuration, status and control information.

Control transfer is bursty, non-periodic communication.

The control pipeis bi-directional — i.e., data can flow in both directions.

© 2015 Jungo Connectivity Ltd. 19 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

Control transfer has arobust error detection, recovery and retransmission mechanism and retries
are made without the involvement of the driver.

The maximum packet size for control endpoints can be only 8 bytes for low-speed devices; 8, 16,
32, or 64 bytes for full-speed devices; and only 64 bytes for high-speed devices.

For more in-depth information regarding USB control transfers and their implementation, refer to
Section 8.2 of the manual.

3.6.2. Isochronous Transfer

Isochronous Transfer is most commonly used for time-dependent information, such as multimedia
streams and telephony.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Isochronous transfer is periodic and continuous.

The isochronous pipe is unidirectional, i.e., a certain endpoint can either transmit or receive
information. Bi-directional isochronous communication requires two isochronous pipes, onein
each direction.

USB guarantees the isochronous transfer access to the USB bandwidth (i.e., it reserves the
required amount of bytes of the USB frame) with bounded latency, and guarantees the data
transfer rate through the pipe, unless there is less data transmitted.

Since timeliness is more important than correctness in this type of transfer, no retries are made in

case of error in the data transfer. However, the datareceiver can determine that an error occurred
on the bus.

3.6.3. Interrupt Transfer

Interrupt Transfer isintended for devices that send and receive small amounts of data infrequently
or in an asynchronous time frame.

This transfer type can be used for low-, full- and high-speed devices.

Interrupt transfer type guarantees a maximum service period and that delivery will be re-
attempted in the next period if there is an error on the bus.

The interrupt pipe, like the isochronous pipe, is unidirectional and periodical.

The maximum packet size for interrupt endpoints can be 8 bytes or less for |ow-speed devices; 64
bytes or less for full-speed devices,; and 1,024 bytes or less for high-speed devices.

© 2015 Jungo Connectivity Ltd. 20 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

3.6.4. Bulk Transfer

Bulk Transfer istypically used for devices that transfer large amounts of non-time sensitive data,
and that can use any available bandwidth, such as printers and scanners.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Bulk transfer is non-periodic, large packet, bursty communication.
Bulk transfer allows access to the bus on an "as-available" basis, guarantees the data transfer but
not the latency, and provides an error check mechanism with retries attempts. If part of the USB

bandwidth is not being used for other transfers, the system will useit for bulk transfer.

Like the other stream pipes (isochronous and interrupt), the bulk pipe is also unidirectional, so bi-
directional transfers require two endpoints.

The maximum packet size for bulk endpoints can be 8, 16, 32, or 64 bytes for full-speed devices,
and 512 bytes for high-speed devices.

3.7. USB Configuration

Before the USB function (or functions, in a compound device) can be operated, the device

must be configured. The host does the configuring by acquiring the configuration information
from the USB device. USB devices report their attributes by descriptors. A descriptor isthe
defined structure and format in which the datais transferred. A complete description of the USB
descriptors can be found in Chapter 9 of the USB Specification (see http://www.usbh.org for the
full specification).

It is best to view the USB descriptors as a hierarchical structure with four levels:
* TheDevicelevel
» The Configuration level

» TheInterface level (thislevel may include an optional
sub-level called Alternate Setting)

» The Endpoint level
Thereis only one device descriptor for each USB device. Each device has one or more

configurations, each configuration has one or more interfaces, and each interface has zero or more
endpoints, as demonstrated in Figure 3.3 below.

© 2015 Jungo Connectivity Ltd. 21 CONFIDENTIAL

http://www.usb.org

Chapter 3. WinDriver USB Overview

Figure 3.3. Device Descriptors

Device Descriptor

Configuration Descriptor Configuration Descriptor
Interface Descriptor Interface Descriptor
Endpoint Endpoint
Descriptor Descriptor |

» Device Level: The device descriptor includes general information about the USB device, i.e.,
global information for all of the device configurations. The device descriptor identifies, among
other things, the device class (HID device, hub, locator device, etc.), subclass, protocol code,
vendor ID, device ID and more. Each USB device has one device descriptor.

» Configuration Level: A USB device has one or more configuration descriptors. Each
descriptor identifies the number of interfaces grouped in the configuration and the power
attributes of the configuration (such as self-powered, remote wakeup, maximum power
consumption and more). Only one configuration can be loaded at a given time. For example,
an ISDN adapter might have two different configurations, one that presentsit with asingle
interface of 128 Kb/s and a second that presents it with two interfaces of 64 Kb/s each.

» Interface Level: Theinterfaceisarelated set of endpoints that present a specific functionality
or feature of the device. Each interface may operate independently. The interface descriptor
describes the number of the interface, the number of endpoints used by this interface
and the interface-specific class, subclass and protocol values when the interface operates
independently.

In addition, an interface may have alter nate settings. The alternate settings alow the endpoints
or their characteristics to be varied after the device is configured.

» Endpoint Level: The lowest level isthe endpoint descriptor, which provides the host with
information regarding the endpoint's data transfer type and maximum packet size. For
isochronous endpoints, the maximum packet size is used to reserve the required bus time for
the data transfer — i.e., the bandwidth. Other endpoint attributes are its bus access frequency,
endpoint number, error handling mechanism and direction. The same endpoint can have
different properties (and consequently different uses) in different alternate settings.

Seems complicated? Not at all! WinDriver automates the USB configuration process. The
included DriverWizard utility [5] and USB diagnostics application scan the USB bus, detect all

© 2015 Jungo Connectivity Ltd. 22 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

USB devices and their configurations, interfaces, alternate settings and endpoints, and enable you
to pick the desired configuration before starting driver development.

WinDriver identifies the endpoint transfer type as determined in the endpoint descriptor. The
driver created with WinDriver contains all configuration information acquired at this early stage.

3.8. WinDriver USB

WinDriver USB enables developersto quickly develop high-performance drivers for USB-based
devices without having to learn the USB specifications and operating system internals, or use
the operating system development kits. For example, Windows drivers can be developed without
using the Windows Driver Kit (WDK) or learning the Windows Driver Model (WDM).

The driver code developed with WinDriver USB is binary compatible across the supported
Windows platforms — Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/Vista/
Server 2008/Server 2003/X P — and source code compatible across all supported operating
systems — Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/
Server 2003/X P, Embedded Windows 8.1/8/7/X P, Windows CE (a.k.a. Windows Embedded
Compact) 4.x—8.x (including Windows Mobile), and Linux. For an up-to-date list of supported
operating systems, visit Jungo's web site — http://www.jungo.com.

WinDriver USB is ageneric tool kit that supports al USB devices from al vendors and with all
types of configurations.

WinDriver USB encapsulates the USB specification and architecture, letting you focus on your
application logic. WinDriver USB features the graphical DriverWizard utility [5], which enables
you to easily detect your hardware, view its configuration information, and test it, before writing
asingleline of code: DriverWizard first lets you choose the desired configuration, interface

and alternate setting combination, using a friendly graphical user interface. After detecting and
configuring your USB device, you can proceed to test the communication with the device —
perform data transfers on the pipes, send control requests, reset the pipes, etc. — in order to
ensure that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizard to automatically generate your
device driver source codein C, Visual Basic .NET, or C#. WinDriver USB provides user-mode
APIs, which you can call from within your application in order to implement the communication
with your device. The WinDriver USB API includes USB-unique operations such as reset of
apipe or adevice. The generated DriverWizard code implements a diagnostics application,
which demonstrates how to use WinDriver's USB API to drive your specific device. In order to
use the application you just need to compile and run it. Y ou can jump-start your development
cycle by using this application as your skeletal driver and then modifying the code, as needed, to
implement the desired driver functionality for your specific device.

DriverWizard also automates the creation of an INF file that registers your device to work with
WinDriver, which is an essential step in order to correctly identify and handle USB devices
using WinDriver. For an explanation on why you need to create an INF file for your USB device,
refer to Section 11.1.1 of the manual. For detailed information on creation of INF files with
DriverWizard, refer to Section 5.2 (see specifically Step 3).

© 2015 Jungo Connectivity Ltd. 23 CONFIDENTIAL

http://www.jungo.com

Chapter 3. WinDriver USB Overview

With WinDriver USB, all development is done in the user mode, using familiar devel opment and
debugging tools and your favorite compiler or devel opment environment (such as MS Visual
Studio, MS eMbedded Visua C++, MS Platform Builder C++, GCC, Windows GCC).

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 8 of the manual.

3.9. WinDriver USB Architecture

To access your hardware, your application calls the WinDriver kernel module using functions
from the WinDriver USB API. The high-level functions utilize the low-level functions, which

use |OCTL s to enable communication between the WinDriver kernel module and your user-
mode application. The WinDriver kernel module accesses your USB device resources through the
native operating system calls.

There are two layers responsible for abstracting the USB device to the USB device driver. The
upper layer isthe USB Driver (USBD) layer, which includes the USB Hub Driver and the USB
Core Driver. The lower level isthe Host Controller Driver (HCD) layer. The division of duties
between the HCD and USBD layersis not defined and is operating system dependent. Both the
HCD and USBD are software interfaces and components of the operating system, where the HCD
layer represents alower level of abstraction.

The HCD isthe software layer that provides an abstraction of the host controller hardware, while
the USBD provides an abstraction of the USB device and the data transfer between the host
software and the function of the USB device.

The USBD communicates with its clients (the specific device driver, for example) through

the USB Driver Interface (USBDI). At the lower level, the Core Driver and USB Hub Driver
implement the hardware access and data transfer by communicating with the HCD using the Host
Controller Driver Interface (HCDI).

The USB Hub Driver isresponsible for identifying the addition and removal of devicesfrom a
particular hub. When the Hub Driver receives asignal that a device was attached or detached, it
uses additional host software and the USB Core Driver to recognize and configure the device. The
software implementing the configuration can include the hub driver, the device driver, and other
software.

WinDriver USB abstracts the configuration procedure and hardware access described above

for the developer. With WinDriver's USB API, developers can perform al the hardware-

related operations without having to master the lower-level implementation for supporting these
operations.

© 2015 Jungo Connectivity Ltd. 24 CONFIDENTIAL

Chapter 3. WinDriver USB Overview

Figure 3.4. WinDriver USB Architecture

--

D Components You Write -
[J WinDriver Components Your Application/DIl/Shared Object

[T] os Components

Hard Your Driver Code
b] Hardware

A .

WinDriver .NET wrapper API
(wdapi_dotnet)

Y ¢

High-level WinDriver API
(wdapi DLL / shared object)

|||

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvré.sys/.dll/.o/ ko)

OS USB Host Stack

Hardware

N

© 2015 Jungo Connectivity Ltd. 25 CONFIDENTIAL

Chapter 4
Installing WinDriver

This chapter takes you through the process of installing WinDriver on your development
platform, and shows you how to verify that your WinDriver is properly installed. The last section
discusses the uninstall procedure. To find out how to install the driver you create on target
platforms, refer to Chapter 10.

4.1. System Requirements

4.1.1. Windows System Requirements

* Any x86 32-bit or 64-bit (x64: AMD64 or Intel EM64T) processor
* Any compiler or development environment supporting C or .NET

* Windows XP requires at least SP2

© 2015 Jungo Connectivity Ltd. 26 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.1.2. Windows CE System Requirements

* Anx86 or ARM target platform running Windows CE (a.k.a. Windows Embedded Compact)
4.x-8.x (including Windows Mobile)
OR
aMIPS target platform running Windows CE 4.x—7.x (including Windows Mobile)

* Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/Vista/Server 2008/Server 2003/
XP host development platform

* |IDE:

« For Windows CE 4.x-5.x (including Windows Mobile):

» Microsoft eMbedded Visual C++ or Microsoft Visua Studio 2005/2008, with a
corresponding target SDK
OR

* Microsoft Platform Builder with a corresponding Board Support Package (BSP) for the
target platform

= For Windows CE 6.x: Microsoft Visual Studio 2005/2008 with a corresponding target SDK
or with the Windows CE 6.0 plugin

« For Windows CE 7.x: Microsoft Visual Studio 2008 with the Windows Embedded Compact
7 plugin

« For Windows CE 8.x: Microsoft Visual Studio 2012 or higher with the Application Builder
for Windows Embedded Compact 2013 plugin

© 2015 Jungo Connectivity Ltd. 27 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.1.3. Linux System Requirements
» Any of the following processor architectures, with a2.6.x or higher Linux kernel:
« 32-bit x86

. 64-bit x86 AMD64 or Intel EMBAT (x86_64)

Jungo strives to support new Linux kernel versions as close as possible to their release.
To find out the latest supported kernel version, refer to the WinDriver release notes
(found online at http://www.jungo.com/st/support/windriver/wdver/).

A GCC compiler

The version of the GCC compiler should match the compiler version used for building
the running Linux kernel.

Any 32-bit or 64-hit development environment (depending on your target configuration)
supporting C for user mode

On your development PC: glibc2.3.x

libstdc++.s0.5 — required for running GUI WinDriver applications (e.g., DriverWizard [5];
Debug Monitor [7.2])

4.2. WinDriver Installation Process

4.2.1. Windows WinDriver Installation Instructions

; Driver installation on Windows requires administrator privileges.

1. Run the WinDriver installation — WD1180.EXE — and follow the installation instructions.

2. At the end of theinstallation, you may be prompted to reboot your computer.

© 2015 Jungo Connectivity Ltd. 28 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/wdver/

Chapter 4. Installing WinDriver

* The WinDriver installation definesaWD_BASEDI R environment variable, which is set to
point to the location of your WinDriver directory, as selected during the installation. This
variable is used during the DriverWizard [5] code generation — it determines the default
directory for saving your generated code and is used in the include paths of the generated
project/make files.

 If theingtallation fails with an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE
\ M cr osof t\ Wndows\ Curr ent Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install driversusing INF files. If the
RunOnce key ismissing, createit; then try installing the INF file again.

Thefollowing stepsarefor registered usersonly:
To register your copy of WinDriver with the license you received from Jungo, follow these steps:
3. Start DriverWizard: Start | Programs | WinDriver | DriverWizard.

4. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

5. Click the Activate L icense button.

6. To register source code that you devel oped during the evaluation period, refer to the
documentation of WDU | ni t () [B.4.1].

4.2.2. Windows CE WinDriver Installation
Instructions

4.2.2.1. Installing WinDriver CE when Building New
CE-Based Platforms

» Thefollowing instructions apply to platform devel opers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with
the appropriate Windows CE plugin. The instructions use the notation ‘Windows CE
IDE' to refer to either of these platforms.

» Werecommend that you read Microsoft's documentation and understand the Windows
CE and device driver integration procedure before you perform the installation.

1. Modify the project registry file— WinDriver\samples\wince_install\project_ wd.reg—to
add an entry for your target device.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — decimal in the case of USB devices.

© 2015 Jungo Connectivity Ltd. 29 CONFIDENTIAL

Chapter 4. Installing WinDriver

2. Compile your Windows CE platform (Sysgen stage).
3. Integrate the driver into your platform:
a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—
WinDriver\redist\<TARGET_CPU>\windrvr6.dll — to the
% FLATRELEASEDIR% subdirectory on the target development platform (should be
the current directory in the new command window).

d. Append the contents of WinDriver\samples\wince install\project_wd.reg to the
% FLATRELEASEDIR%Y\project.regregistry file.

e. Copy the contents of the WinDriver\samples\wince install\project_wd.bib
file to the FILES section of the binary image builder file —
% _ FLATRELEASEDIR%\project.bib. Then uncomment the line that matches the
target platform (see the "TODQO" comments in the copied text).

This step is only necessary if you want the WinDriver CE kernel file
(windrvr6.dIl) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using
aboot disk. If you prefer to have the file windrvr 6.dll loaded on demand via
the CESH/PPSH services, you do not need to perform this step until you build a
permanent kernel.

4. Select Make Run-Time Image from the Build menu to save the new image (NK.BIN).

5. Download your new kernel to the target platform and initialize it either by selecting
Attach Device from the Target menu, or by using aboot disk. For Windows CE 4.x, the
menu is called Download/I nitialize rather than Attach Device.

6. Restart your target CE platform. The WinDriver CE kernel will automatically load.

7. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 4.4.2, which describes how to check your installation).

4.2.2.2. Installing WinDriver CE when Developing
Applications for Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

The following instructions apply to driver developers who do not build the Windows CE kernel,
but only download their drivers, built using MS eMbedded Visual C++ or MS Visua Studio
2005/2008 to a ready-made Windows CE platform.

© 2015 Jungo Connectivity Ltd. 30 CONFIDENTIAL

Chapter 4. Installing WinDriver

1. Run the WinDriver installation — WD1180CE.EXE — on your host Windows PC, and
complete the installation.

2. Copy WinDriver's kernel module — windrvr 6.dll — from the
WinDriver\redist\WINCE\<TARGET _CPU> directory on the Windows host devel opment
PC to the Windows directory on your target Windows CE platform.

3. Add WinDriver to the list of device drivers Windows CE |oads on boot:

* Modify the registry according to the entries documented in the file
WinDriver\samples\wince_install\project_wd.reg. This can be done using the Windows
CE Pocket Registry Editor on the hand-held CE computer, or by using the Remote CE
Registry Editor Tool supplied with MS eMbedded Visual C++ or MS Visual Studio
2005/2008. Note that in order to use the Remote CE Registry Editor tool you will need to
have Windows CE Servicesinstalled on your Windows host platform.

When defining 1D values, take care to use the correct format, as specified in the
project_wd.reg comments — decimal in the case of USB devices.

"
1

* On many versions of Windows CE, the operating system's security scheme prevents the
loading of unsigned drivers at boot time, therefore the WinDriver kernel module has to
be reloaded after boot. To load WinDriver on the target Windows CE platform every time
the OS is started, copy the WinDriver\redist\Windows _Mobile 5 ARMV4l\wdreg.exe
utility to the Windows\Star tUp directory on the target PC.

4. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

5. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 4.4, which describes how to check your installation).

4.2.2.3. Windows CE Installation Note

The WinDriver installation on the host Windows PC definesaWWD _BASEDI R environment
variable, which is set to point to the location of your WinDriver directory, as selected during the
installation. This variable is used during the DriverWizard [5] code generation — it determines
the default directory for saving your generated code, and is used in the include paths of the
generated project/make files.

Note that if you install the WinDriver Windows toolkit on the same host PC, the installation will
override the value of the WD BASEDI R variable from the Windows CE installation.

© 2015 Jungo Connectivity Ltd. 31 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.2.3. Linux WinDriver Installation Instructions

4.2.3.1. Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header files that the kernel itself was
compiled with. Since WinDriver installs kernel modules, it must compile with the header files of
the Linux kernel during the installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code and thefile
version.h areinstalled on your machine:

Install the Linux kernel sour ce code:

» If you haveyet toinstall Linux, install it, including the kernel source code, by following the
instructions for your Linux distribution.

 If Linux isaready installed on your machine, check whether the Linux source code was
installed. Y ou can do this by looking for ‘linux' in the /usr/sr ¢ directory. If the source code
isnot installed, either install it, or reinstall Linux with the source code, by following the
instructions for your Linux distribution.

Install version.h:
» Thefileversion.h is created when you first compile the Linux kernel source code.
Some distributions provide a compiled kernel without the file ver sion.h. Look under

lusr/src/linux/includée/linux to see whether you have thisfile. If you do not, follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd /usr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosing Save and Exit.

5. Type:
make dep

6. Exit super user mode:
exit

To run GUI WinDriver applications (e.g., DriverWizard [5]; Debug Monitor [7.2]) you must also
have version 5.0 of the libstdc++ library — libstdc++.50.5. If you do not have thisfile, install it
from the relevant RPM in your Linux distribution (e.g., compat-libstdc++).

© 2015 Jungo Connectivity Ltd. 32 CONFIDENTIAL

Chapter 4. Installing WinDriver

Before proceeding with the installation, you must also make sure that you have alinux symbolic
link. If you do not, create one by typing

fusr/src$ In -s <target kernel >/Iinux

For example, for the Linux 2.4 kernel type

fusr/src$ In -s linux-2.4/ |inux

4.2.3.2. Installation

1. On your development Linux machine, change directory to your preferred installation
directory, for example to your home directory:
$ cd ~

The path to the installation directory must not contain any spaces.

"
1

2. Extract the WinDriver distribution file— WD21180L N.tgz or WD1180L Nx86_64.tgz —
$ tar xvzf <file location> WD1180LN x86_64].tgz

For example, to extract WD1180L N.tgz run this command:
$ tar xvzf ~/WD1180LN.tgz

3. Change directory to your WinDriver redist directory (the tar automatically creates a
WinDriver directory):
$ cd <WnDriver directory path>/redi st

4. Install WinDriver:

a <WnDriver directory>/redist$./configure

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with
the- - wi t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full
path to the kernel source directory — e.g., /usr/src/linux.

* If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use
of kbuild on earlier versions of Linux, by executing the configuration script
with the - - enabl e- kbui | d flag.

» For afull list of the configuration script options, use the - - hel p option:
./lconfigure --help

b. <WnDriver directory>/redist$ nmake

c. Become super user:
<WnDriver directory>/redist$ su

© 2015 Jungo Connectivity Ltd. 33 CONFIDENTIAL

Chapter 4. Installing WinDriver

d. Install the driver:
<WnDriver directory>/redist# make install

5. Create asymbolic link so that you can easily launch the DriverWizard GUI:
$1In-s <path to WnDriver>/w zard/ wdwi zard /usr/bi n/ wdwi zard

6. Change the read and execute permissions on the file wdwizard so that ordinary users can
access this program.

7. Change the user and group 1Ds and give read/write permissions to the devicefile
/deviwindrvr 6, depending on how you wish to allow users to access hardware
through the device. Due to security reasons, by default the devicefileis created
with permissions only for the root user. Change the permissions by modifying your
/etc/udev/per missions.d/50-udev.permissions file. For example, add the following line to
provide read and write permissions:
wi ndrvr6: root:root: 0666

8. Defineanew WD_BASEDI R environment variable and set it to point to the location of your
WinDriver directory, as selected during the installation. This variable is used in the make and
source files of the WinDriver samples and generated DriverWizard [5] code, and is also used
to determine the default directory for saving your generated DriverWizard projects. If you do
not define this variable you will be instructed to do so when attempting to build the sample/
generated code using the WinDriver makefiles.

9. Exit super user mode:
exit

10. You can now start using WinDriver to access your hardware and generate your driver code!

©) Use the WinDriver/util/wdreg script to load the WinDriver kernel module [9.3].

Thefollowing stepsarefor registered usersonly:
To register your copy of WinDriver with the license you received from Jungo, follow these steps:

12. Start DriverWizard:
$ <path to WnbDriver>/w zard/ wdwi zard

13. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

14. Click the Activate License button.

15. To register source code that you devel oped during the evaluation period, refer to the
documentation of WDU_| ni t () [B.4.1].

© 2015 Jungo Connectivity Ltd. 34 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.2.3.3. Restricting Hardware Access on Linux

Since /dev/windrvr 6 gives direct hardware access to user programs, it may compromise
kernel stability on multi-user Linux systems. Please restrict access to DriverWizard and the
devicefile/dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically perform the
steps of changing the permissions on /dev/windrvr 6 and the DriverWizard application
(wdwizard).

4.3. Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, follow the steps outlined in
Section 4.2.1, which illustrate the process of installing WinDriver for Windows. Y ou can either
choose to overwrite the existing installation or install to a separate directory.

After installation, start DriverWizard and enter the new license string, if you have received one.
This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license string as a parameter to WDU_| ni t () [B.4.1]
(ortoWD_Li cense(), when using the old WD_UsbXXX() APIs).

The procedure for upgrading your installation on other operating systems is the same as the one
described above. Please check the respective installation sections for installation details.

4.4. Checking Your Installation

4.4.1. Windows and Linux Installation Check

1. Start DriverWizard — <path to WinDriver >/wizar d/wdwizar d. On Windows you can also
run DriverWizard from the Start menu: Start | Programs | WinDriver | Driver Wizard.

2. If you are aregistered user, make sure that your WinDriver licenseisregistered (refer to
Section 4.2, which explains how to install WinDriver and register your license).
If you are an evaluation version user, you do not need to register alicense.

© 2015 Jungo Connectivity Ltd. 35 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.4.2. Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility —
WinDriver\util\wddebug\<TARGET _CPU>\wddebug.exe — from the host Windows
machine to adirectory on your target Windows CE device.

2. Run the Debug Monitor with the st at us command on the target device:
wddebug. exe st at us
If the WinDriver installation was successful, the application will display information

regarding the Debug Monitor version and current status, the running WinDriver kernel
module, and general system information.

4.5. Uninstalling WinDriver

This section will help you to uninstall either the evaluation or registered version of WinDriver.

4.5.1. Windows WinDriver Uninstall Instructions

* You can select to use the graphical wdreg_gui.exe utility instead of wdr eg.exe.

» wdreg.exe and wdreg_gui.exe are found in the WinDriver\util directory (see Chapter 9
for details regarding these utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug Monitor, and
user-specific applications.

2. Uninstall al Plug-and-Play devices (USB/PCI/PCMCIA) that have been registered with
WinDriver viaan INF file:

* Uninstall the device using the wdr eg utility:
wdreg -inf <path to the INF file> uninstall

» Verify that no INF files that register your device(s) with WinDriver's kernel module
(windrvr6.sys) are found in the %owindir %\inf directory.

3. Uninstall WinDriver:

* On thedevelopment PC, on which you installed the WinDriver toolkit:
Run Start | WinDriver | Uninstall , OR run the uninstall.exe utility from the WinDriver
installation directory.

The uninstall will stop and unload the WinDriver kernel module (windrvr 6.sys); delete the
copy of the windrvr 6.inf file from the % windir %\inf directory; delete WinDriver from
Windows Start menu; delete the WinDriver installation directory (except for files that
you added to this directory); and delete the shortcut icons to the DriverWizard and Debug
Monitor utilities from the Desktop.

© 2015 Jungo Connectivity Ltd. 36 CONFIDENTIAL

Chapter 4. Installing WinDriver

* On atarget PC, on which you installed the WinDriver kernel module (windrvr 6.sys), but

not the entire WinDriver toolKkit:
Use the wdr eg utility to stop and unload the driver:
wdreg -inf <path to wi ndrvr6.inf> uninstall

When running this command, windr vr 6.sys should reside in the same directory as
windrvr6.inf.

(On the development PC, the relevant wdr eg uninstall command is executed for you by the
uninstall utility).

* If you attempt to uninstall WinDriver while there are open handles to the WinDriver
service (windrvr6.sys or your renamed driver [11.2], or there are connected and
enabled Plug-and-Play devices that are registered to work with this service, wdreg
will fail to uninstall the driver. This ensures that you do not uninstall the driver while
it is being used.

» You can check if the WinDriver kernel module is loaded by running the Debug
Monitor utility (WinDriver\util\wddebug_gui.exe) [7.2]. When the driver is loaded,
the Debug Monitor log displays driver and OS information; otherwise, it displays a
relevant error message. On the development PC, the uninstall command will delete
the Debug Monitor executables; to use this utility after the uninstallation, create a
copy of wddebug_gui.exe before performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if they exist):

% windir % \system32\driver s\windrvr6.sys
% windir %\inf\windrvr 6.inf
% windir % \system32\wdapi1180.dll

% windir % \sysW OW 64\wdapi1180.dll (Windows x64)

5. Reboot the computer.

© 2015 Jungo Connectivity Ltd. 37 CONFIDENTIAL

Chapter 4. Installing WinDriver

4.5.2. Linux WinDriver Uninstall Instructions

; Thefollowing commands must be executed with root privileges.

1. Verify that the WinDriver driver modules are not being used by another program:

* View thelist of modules and the programs using each of them:
[sbin/lsnod

* Identify any applications and modules that are using the WinDriver driver modules. (By
default, WinDriver module names begin with windrvr 6).

* Close any applications that are using the WinDriver driver modules.

2. Run the following command to unload the WinDriver driver modules:
[sbi n/ nodprobe -r w ndrvr6

3. Removethefile .windriver.rc from the /etc directory:
#rm-f /etc/.windriver.rc

4. Removethefile .windriver.rc from $HOME:
#rm-f $HOVE/ .wi ndriver.rc

5. If you created a symbolic link to DriverWizard, remove the link using the command
rm-f /[usr/bin/wdw zard

6. Remove the WinDriver installation directory using the command
rm-rf <path to the WnDriver directory>
(forexample:# rm -rf ~/WnDri ver).

7. Remove the WinDriver shared object file, if it exists:
Jusr/lib/libwdapi1180.s0 (32-bit x86) /
Jusr /lib64/libwdapi1180.s0 (64-bit x86).

© 2015 Jungo Connectivity Ltd. 38 CONFIDENTIAL

Chapter 5
Using DriverWizard

This chapter describes the WinDriver DriverWizard utility and its hardware diagnostics and driver
code generation capabilities.

5.1. An Overview

DriverWizard (included in the WinDriver toolkit) isagraphical user interface (GUI) tool that is
targeted at two major phases in the hardware and driver devel opment:

Har dwar e diagnostics — DriverWizard enables you to write and read hardware resources
before writing asingle line of code. After the hardware has been built, attach your deviceto
aUSB port on your machine, view its configuration and pipes information, and verify the
hardware's functionality by transferring data on the pipes, sending standard requests on the
control pipe, and resetting the pipes.

Code generation — Once you have verified that the device is operating to your satisfaction,
use DriverWizard generate skeletal driver source code with functions to view and access your
hardware's resources.

On Windows, DriverWizard can aso be used to generate an INF file [11.1] for your hardware.

The code generated by DriverWizard is composed of the following elements:

Library functionsfor accessing each element of your device's resources (memory ranges, |/0O
ranges, registers and interrupts).

A 32-bit diagnostics program in console mode with which you can diagnose your device.
This application utilizes the special library functions described above. Use this diagnostics
program as your skeletal device driver.

A project solution that you can use to automatically load all of the project information and
filesinto your development environment.
For Linux, DriverWizard generates the required makefile.

© 2015 Jungo Connectivity Ltd. 39 CONFIDENTIAL

Chapter 5. Using DriverWizard

5.2. DriverWizard Walkthrough

To use DriverWizard, follow these steps:

1. Attach your hardwareto the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:
a. Start DriverWizard — <path to WinDriver >/wizar d/wdwizard. On Windows you

can also run DriverWizard from the Start menu: Start | Programs | WinDriver |
DriverWizard.

@ On Windows Vista and higher you must run DriverWizard as administrator.

b. Click New host driver project to start a new project.

Figure5.1. Create a New Driver Project

Choose Your Project

@
JUNGO

CONNECTIVITY

5

MNew host driver project | | Open an existing project

© 2015 Jungo Connectivity Ltd. 40 CONFIDENTIAL

Chapter 5. Using DriverWizard

c. Select your device from the list of devices detected by DriverWizard.

Figure5.2. Select Your Device

Select Your Device

Please select your device from the detected devices below, or choose "ISA card™ for non Plug and Play cards.

Type Description Vendor B [Refresh devices list]
== PEL Intel - 6300ESB Hub Interface to PCIFX Bridge Intel I e ———— I
PCL: Intel - 82541E] Gigabit Ethernet Controller Intel .
PCI: Intel - 82541E] Gigabit Ethernet Controller Intel I Uninstall .INF file I
= PCL: Intel - 6300ESB USB 1.1 UHCI Controller #1 Intel
UsB: Microsoft Corp. - Product ID: 0083 Microsoft Corp.
=l PCL Intel - 6300ESB USB 1.1 UHCI Controller #2 Intel
=+ USB: Belkin () - Product 1D: 1603 Belkin ()
USB: Belkin () - Product ID: 1603 Belkin ()
USB: Belkin () - Product ID: 1603 Belkin ()
PCL: Intel - 6300ESBE Watchdog Timer Intel
PCL: Intel - 6300ESB APIC1 Intel
= PCI: Intel - 6300ESB USE 2.0 EHCI Controller Intel L
'Cypress Semiconductor Corp. - Product ID: 1003 - Cypress Semiconductor Corgll
= PCL: Intel - 82801DB Hub Interface to PCI Bridge Intel
PCL: ATI- Rage XL PCI ATI
PCL: Intel - 6300ESB LPC Interface Bridge Intel
PCIL: Intel - 6300ESB IDE Controller Intel
PCL Intel - 6300ESB SMBus Controller Intel 7
4 1, »

Device Description:

Hardware ID: Vendor 04b4, Product 1003
Driver: WinDrivers
"DEVICE"™

MNext >][Cancel

3. Generate and install an INF filefor your device [Windows]:
On the supported Windows operating systems, the driver for Plug-and-Play devices (such
asUSB) isinstalled by installing an INF file for the device. DriverWizard enables you
to generate an INF file that registers your device to work with WinDriver (i.e., with the
windrvr6.sysdriver). The INF file generated by DriverWizard should later be distributed to
your Windows customers, and installed on their PCs.
The INF file that you generate in this step is also designed to enable DriverWizard to
diagnose Plug-and-Play devices on Windows. Additional information concerning the need for
an INFfileis provided in Section 11.1.1.

If you don't need to generate and install an INF file, skip this step.
To generate and install the INF file with DriverWizard, do the following:

a. Inthe Select Your Device screen (see Step 2), click the Generate .INF file button or
click Next.

b. DriverWizard will display information detected for your device — Vendor I1D, Product
ID, Device Class, manufacturer name and device name — and allow you to modify this
information.

© 2015 Jungo Connectivity Ltd. 41 CONFIDENTIAL

Chapter 5. Using DriverWizard

Figure5.3. DriverWizard INF File Information

e

Enter Information for INF File
Please fill in the information below for your device.

This information will be incorporated into the INF file,
which WinDriver will generate for your device.

The information you spedfy will appear in the
Device Manager after the installation of the INF file.

Vendor ID: | 04b4 Device ID: | 1003

Manufacturer name: |Cypress Semiconductor Corp.

Device name: DE'I.-'ICE|

Device Class: OTHER ||

WinDriver's unique Class.

IIse this option for @ non-standard type of device.
WinDriver will set a new Class type for your device.

Support Message Signaled Interrupts (MSI/MSI-X)
Automatically install the INF file.

Mote: This will replace any existing driver you may have for your device,

Mext l ’ Cancel

c. For multiple-interface USB devices, you can select to generate an INF file either for the
composite device or for a specific interface.

* When selecting to generate an INF file for a specific interface of a multi-interface

USB device the INF information dialogue will indicate for which interface the INF file
is generated.

© 2015 Jungo Connectivity Ltd. 42 CONFIDENTIAL

Chapter 5. Using DriverWizard

Figure5.4. Driver Wizard Multi-Interface
INF File Information — Specific Interface

i

Enter Information for INF File
Please fill in the information below for your device.

This information will be incorporated into the INF file,
which WinDriver will generate for your device.

The information you spedfy will appear in the
Device Manager after the installation of the INF file.

vendor ID: | 0408| Device ID: | eald
Manufacturer name: |Quanta Computer, Inc.

Device name: | DEVICE

This is @ multi-interface device.

@ Generate INF file for the root device itself

Generate INF file for the following device interfaces

Interface 0
Device Class: OTHER =
WinDriver's unique Class. -

m

IIse this option for a non-standard type of device.
WinDriver wil set a new Class type for your device. 52

Support Message Signaled Interrupts (MSI/MSI-X)
Automatically install the INF file.

Mote: This will replace any existing driver you may have for your device.

[vee][cone

» When selecting to generate an INF file for a composite device of a multi-interface
USB device, the INF information dial ogue provides you with the option to either
generate an INF file for the root device itself, or generate an INF file for specific
interfaces, which you can select from the dialogue.

Selecting to generate an INF file for the root device will enable you to handle multiple
active interfaces simultaneoudly.

© 2015 Jungo Connectivity Ltd. 43 CONFIDENTIAL

Chapter 5. Using DriverWizard

Figure5.5. Driver Wizard Multi-Interface
INF File Information — Composite Device

i o)

Enter Information for INF File
Please fill in the information below for your device.

This information will be incorporated into the INF file,
which WinDriver will generate for your device.

The information you spedfy will appear in the
Device Manager after the installation of the INF file.

Vendor ID: |0408| Device ID: | eald
Manufacturer name: | Quanta Computer, Inc.
Device name: | DEVICE

This is @ multi-interface device.

@ Generate INF file for the root device itself

Generate INF file for the following device interfaces %
Interface 4 Interface 3 Interface 2 Interface 1 Interface 0
Device Class: OTHER =
WinDriver's unique Class. -

m

LIse this option for a non-standard type of device.
WinDriver will set a new Class type for your device.

Support Message Signaled Interrupts (MSI/MSI-X)
| Butomatically install the INF file.

Mote: This will replace any existing driver you may have for your device.

Mext] | Cancel

d. When you are done, click Next and choose the directory in which you wish to store the
generated INF file. DriverWizard will then automatically generate the INF file for you.

Y ou can choose to automatically install the INF file by checking the Automatically
Install the INF file option in the DriverWizard's INF generation dialogue.

If the automatic INF file installation fails, DriverWizard will notify you and provide
manual installation instructions (refer also the manual INF file installation instructionsin
Section 11.1).

e. When the INF file installation completes, select and open your device from the list in the
Select Your Device screen.

© 2015 Jungo Connectivity Ltd. 44 CONFIDENTIAL

Chapter 5. Using DriverWizard

4. Uninstall the INF file of your device [Windows]:
On Windows, you can use DriverWizard to uninstall a previously installed device INF file.
Thiswill unregister the device from its current driver and delete the copy of the INF filein
the Windows INF directory.

In order for WinDriver to correctly identify the resouces of a USB device and
communicate with it — including for the purpose of the DriverWizard device
diagnostics outlined in the next step — the deivce must be registered to work with
WinDriver viaan INF file (see Step 3).

If you do not wish to uninstall an INF file, skip this step.
To uninstall the INF file, do the following:
a. Inthe Select Your Device screen (see Step 2), click the Uninstall .INF file button.
b. Select the INF file to be removed.
5. Select thedesired alter nate setting:

Figure5.6. Select Device Interface

[Active Projects & x|

Alternate Setting 2: Mumber of Endpoints 2

a Cypress Semiconductor Corp. - Product ID: 1003 | v

=} Cypress Semiconductor Corp. - Product ID: 1003
=t Interface 0

m rAIb;fnate Setting 0 Pipe Name Pipe Type Information

Alternate Setting 1 - - :
1 0x0 direction: in & packet size: 64
Q:E:::E g::gg i 2 pipe0x82 Bulk direction: in, packet size: 512
Alternate Setting 5 X o X
Alternate Setting 6 3 pipe Ox6 Bulk direction: out, packet size: 512
Read [Write

DriverWizard detects all the device's supported alternate settings and displays them, as
demonstrated in Figure 5.6 below.
Select the desired alter nate setting from the displayed list.

DriverWizard will display the pipesinformation for the selected aternate setting.

For USB devices with only one aternate setting configured, DriverWizard
automatically selects the detected alternate setting and therefore the Select Device
I nterface dialogue will not be displayed.

6. Diagnose your device:
Before writing your device driver, it isimportant to make sure your hardware is working as
expected. Use DriverWizard to diagnose your hardware. All of your activity will be logged in
the DriverWizard log so that you may later analyze your tests:

© 2015 Jungo Connectivity Ltd. 45 CONFIDENTIAL

Chapter 5. Using DriverWizard

a. Test your USB device's pipes. DriverWizard shows the pipes detected for the selected
alternate setting. To perform USB data transfers on the pipes, follow these steps:

Select the desired pipe.

For a control pipe (abidirectiona pipe), click Read / Write. A new dialogue will
appear, alowing you to select a standard USB request or define a custom request, as
demonstrated in Figure 5.7.

Figure5.7. USB Control Transfers

E:-' Pipe 0 - Control @
Setup Packet Write to pipe data (Hex):
Custom request u
Type Request wialue wIndex wLength
(0] 1] 0o 0 1]
00 Q0 00 00 00 00 Qo0 0o
Action
[Write to Pipe] Read from Fipe
I Clear ‘ I Save Write Data ‘
Pipe to File I File to Pipe ‘

When you select one of the available standard USB requests, the setup packet
information for the selected request is automaticaly filled and the request
description is displayed in the Request Description box.

For a custom request, you are required to enter the setup packet information and
write data (if exists) yourself. The size of the setup packet should be eight bytes and
it should be defined using little endian byte ordering. The setup packet information
should conform to the USB specification parameters (bnRequest Type,
bRequest ,wal ue, W ndex, wLengt h).

More detailed information on the standard USB requests, on how to
implement the control transfer and how to send setup packets can be found in
Section 8.2.

For an input pipe (moves data from device to host) click Listen to Pipe. To
successfully accomplish this operation with devices other than HID, you need to
first verify that the device sends data to the host. If no datais sent after listening for
ashort period of time, DriverWizard will notify you that the Transfer Failed.

© 2015 Jungo Connectivity Ltd. 46

CONFIDENTIAL

Chapter 5. Using DriverWizard

To stop reading, click Stop Listen to Pipe.

Figure5.8. Listen to Pipe

Alternate Setting 2: Number of Endpoints 2

Pipe Name Pipe Type Information

1 pipe 0x0 Control direction: in & out, packet size: 64

W direction: in, packet size: 512

3 pipe 0xB Bulk direction: out, packet size: 512

I Listen to Pipe JI Reset Pipe]
b

iv. For an output pipe (moves data from host to device), click Writeto Pipe. A new
dialogue box will appear asking you to enter the datato write. The DriverWizard log

will contain the result of the operation.

Figure5.9. Writeto Pipe

Alternate Setting 2: Mumber of Endpoints 2

Pipe Name Pipe Type Information

1 pipe 0x0 Control direction: in & out, packet size: 64

2 pipe 0x82 Bulk direction: in, packet size: 512

k1 pipe Ox5 m direction: out, packet size: 512

Write to Pipe Jl Reset Pipe
Loy

[Write To Pipe B
Write to pipe data (Hex):
DE AD BF AF
Action
[Write to Pipe] [File to Pipe]
[Clear] [Save Write Data]

V. You can reset input and output pipes by pressing the Reset Pipe button for the
selected pipe.

7. Generatethe skeletal driver code:

a. Select to generate code either viathe Gener ate Code toolbar icon or from the Project |
Gener ate Code menu.

b. In the Select Code Generation Options dialogue box that will appear, choose the code
language and development environment(s) for the generated code and select Next to

generate the code.

© 2015 Jungo Connectivity Ltd.

47

CONFIDENTIAL

Chapter 5. Using DriverWizard

Figure5.10. Code Generation Options

Select Code Generation Options

Add device-spedfic customization (optional):
Mo customization

Select the code-generation language:

AMSI C

Select your target development environments:

[T windows GCC - MinGW and Cygwin (for AMDE)

[] Windows GCC - MinG\W and Cygwin {for x86)

[] M5 Developer Studio \MET 2005 {for X86)

[] M5 Developer Studio \MET 2005 {for AMDS4)

[] Ms Developer Studio .MET 2005 {for Windows Mobile 5)
[] Ms Developer Studio \MET 2008 (for X86)

[T] M5 Developer Studio \MET 2008 (for AMDES)

[T] M3 Developer Studio \MET 2008 (for Windows Mobile 5)
[T] M5 Developer Studio \NET 2010 (for X88)

[] M5 Developer Studio \MET 2010 {for AMD&4)

[] M5 Developer Studio \MET 2012 {for X86)

[] M5 Developer Studio \MET 2012 {for AMDS4)

[] MS Developer Studio \MET 2013 {for X86)

[T] M5 Developer Studio \MET 2013 (for AMDES)

[] Microsoft eMbdedded Visual C++ - for CE

[Microsoft Platform Builder C++ - for CE

[Linux Makefile

IDE to Invoke:

Mone

=N

c. Save your project (if required) and click OK to open your development environment

with the generated driver.
d. Close DriverWizard.

8. Compile and run the generated code:

» Usethis code as a starting point for your device driver. Modify where needed to perform

your driver's specific functionality.

» The source code DriverWizard creates can be compiled with any 32-bit compiler, and will

run on all supported platforms without modification.

For detailed compilation instructions, refer to Section 5.2.2.

© 2015 Jungo Connectivity Ltd.

48

CONFIDENTIAL

Chapter 5. Using DriverWizard

5.2.1. Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs according to your
specifications, you are ready to write your driver.

5.2.1.1. Generating the Code

Generate code by selecting this option either via DriverWizard's Gener ate Code toolbar icon

or from the wizard's Project | Generate Code menu (see Section 5.2, Step 7). DriverWizard
will generate the source code for your driver. The files are saved in a directory DriverWizard
creates for every development environment and operating system selected in the code generation
dialogue.

5.2.1.2. The Generated USB C Code

In the source code directory you now have a new xxx_diag.c source file (where xxx is the name
you selected for your DriverWizard project). This file implements a diagnostic USB application,
which demonstrates how to use WinDriver's USB API to locate and communicate with your
USB device(s), including detection of Plug-and-Play events (device insertion/removal, etc.),
performing read/write transfers on the pipes, resetting the pipes and changing the device's active
alternate setting.

The generated application supports handling of multiple identical USB devices.

5.2.2. Compiling the Generated Code

5.2.2.1. Windows and Windows CE Compilation

As explained above, on Windows you can select to generate project, solution, and make files for
the supported compilers and development environments — MS Visual Studio, Windows GCC
(MinGWI/Cygwin), MS eMbedded Visual C++, or MS Platform Builder.

For integrated devel opment environments (IDES), such as MS Visual Studio, you can also select
to automatically invoke your selected IDE from the wizard. Y ou can then proceed to immediately
build and run the code from your selected IDE.

Y ou can a'so build the generated code using any other compiler or devel opment environment that
supports the selected code language and target OS. Simply create a new project or make file for
your selected compiler/environment, include the generated source files, and run the code.

» For Windows, the generated compiler/environment files are located under an x86
directory — for 32-bit projects — or an amd64 directory — for 64-bit projects.

 For Windows CE, note that the generated Windows M obile code is targeted at the
Windows Mobile 5.0/6.0 ARMV 4l SDK.

© 2015 Jungo Connectivity Ltd. 49 CONFIDENTIAL

Chapter 5. Using DriverWizard

5.2.2.2. Linux Compilation

Use the makefile that was created for you by DriverWizard in order to build the generated code
using your favorite compiler, preferably GCC.

© 2015 Jungo Connectivity Ltd. 50 CONFIDENTIAL

Chapter 6
Developing a Driver

This chapter takes you through the WinDriver driver development cycle.

6.1. Using DriverWizard to Build a Device
Driver

» Use DriverWizard to diagnose your device and verify that it operates as expected: View the
device's configuration information, transfer data on its pipes, send standard requests to the
control pipe, and reset the pipes.

» Use DriverWizard to generate skeletal code for your devicein C, Visual Basic .NET, or C#.
For more information about DriverWizard, refer to Chapter 5.

» Useany Cor .NET compiler or development environment (depending on the code you created)
to build the skeletal driver you need.
WinDriver provides specific support for the following environments and compilers: MS Visual
Studio, MS eMbedded Visual C++, MS Platform Builder C++, GCC, Windows GCC

That isal you need to do in order to create your user-mode driver.

For a detailed description of WinDriver's USB AP, refer to Appendix B.

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 8.

6.2. Writing the Device Driver Without
DriverWizard

There may be times when you choose to write your driver directly, without using DriverWizard.
In such cases, either follow the steps outlined in this section to create a new driver project, or
select aWinDriver sample that most closely resembles your target driver and modify it to suit
your specific requirements.

6.2.1. Include the Required WinDriver Files

1. Include the relevant WinDriver header filesin your driver project.
All header files are found under the WinDriver/include directory.

All WinDriver projects require the windrvr.h header file.

© 2015 Jungo Connectivity Ltd. 51 CONFIDENTIAL

Chapter 6. Developing a Driver

When using the WDU_xxx WinDriver USB API [B.2], include the wdu_lib.h header file;
(thisfile already includes windrvr.h).

Include any other header file that provides APIs that you wish to use from your code (e.g.,
filesfrom the WinDriver/samples/shar ed directory, which provide convenient diagnostics
functions.)

2. Include the relevant header files from your source code: For example, to use the USB API
from the wdu_lib.h header file, add the following line to the code:

#i nclude "wdu_lib. h"
3. Link your code with the WDAPI library (Windows) / shared object (Linux):

» For Windows: WinDriver\lib\<CPU>\wdapi1180.lib, where the <CPU> directory is
either x86 (32-bit binaries for x86 platforms), amd64 (64-bit binaries for x64 platforms),
or amd64\x86 (32-bit binaries for x64 platforms [A.2]

» For Windows CE: WinDriver\lib\WINCE\<CPU>\wdapi1180.lib

* For Linux: From the WinDriver/lib directory — libwdapi1180.s0 or libwdapi1180 32.s0
(for 32-bit applications targeted at 64-bit platforms)
Note: When using libwdapi1180 32.so, first create a copy of thisfilein adifferent
directory and rename it to libwdapi1180.s0, then link your code with the renamed
file[A.2].

Y ou can aso include the library's source files in your project instead of linking the project
with the library. The C source files are located under the WinDriver/sr c/wdapi directory.

When linking your project with the WDAPI library/shared object, you will need to
distribute this binary with your driver.

For Windows, get wdapi1180.dll / wdapi1180 32.dll (for 32-bit applications targeted
at 64-bit platforms) from the WinDriver\redist directory.

For Linux, get libwdapi1180.so / libwdapi1180 32.so (for 32-bit applications targeted
at 64-bit platforms) from the WinDriver/lib directory.

Note: On Windows and Linux, when using the DL L/shared object file for 32-bit applications
on 64-bit platforms (wdapi1180 32.dll / libwdapil180_32.s0), rename the copy of thefilein
the distribution package, by removing the _32 portion [A.2].

For detailed distribution instructions, refer to Chapter 10.

4. Add any other WinDriver source files that implement API that you which to use in your code
(e.g., filesfrom the WinDriver /samples/shar ed directory.)

6.2.2. Write Your Code

1. Call WDU_I ni t () [B.4.1] at the beginning of your program to initialize WinDriver for your
USB device, and wait for the device-attach callback. The relevant device information will be
provided in the attach callback.

© 2015 Jungo Connectivity Ltd. 52 CONFIDENTIAL

Chapter 6. Developing a Driver

2. Once the attach callback is received, you can start using one of the
WDU_Tr ansf er () [B.4.8.1] functions family to send and receive data.

3. Tofinish, call WbU_Uni ni t () [B.4.7] to unregister from the device.

6.2.3. Configure and Build Your Code

After including the required files and writing your code, make sure that the required build flags
and environment variables are set, then build your code.

_ When developing a driver for a 64-bit platform [A], your project or makefile must include

U the KERNEL_64BI T preprocessor definition. In the makefiles, the definition is added using
the - Dflag: - DKERNEL _64BI T. (The sample and wizard-generated Linux and Windows
GCC makefiles and the Windows M S Visual Studio projects, in the 64-bit WinDriver
toolkit, already include this definition.)

, Beforebuilding your code, verify that the WD_BASEDI R environment variable is set to the
location of the of the WinDriver installation directory.
On Windows, Windows CE, and Linux you can define the WD_BASEDI R environment
variable globally — as explained in Chapter 4: For Windows — refer to the Windows
WD_BASEDIR note in Section 4.2.1; for Windows CE — refer to Section 4.2.2.3; for
Linux: refer to Section 4.2.3.2, Step 8.

© 2015 Jungo Connectivity Ltd. 53 CONFIDENTIAL

Chapter 6. Developing a Driver

6.3. Developing Your Driver on Windows CE
Platforms

To use WinDriver to handle a Plug-and-Play device, you must first register the device with the
WinDriver kernel module (windrvr6.dll).

To register the device with WinDriver, use either of the following methods:

* Modify the registry to identify your device and link it to windrvr6.dll. The registry can be
modified by adding the relevant information to your project.reg file.

« Toidentify the device by its vendor ID (<VID>) and product ID (<PID>) — as decimal
values — add the following:

[HKEY_LOCAL_MACHI NE\ Dr i ver s\ USB\ LoadCl i ent s\ <VI D>_<PI D>\ Def aul t\ Def aul t\ VWDR]
"DLL"="wi ndrvr6.dl "

« Toidentify the device by its USB class (<CLASS>), subclass (< SUBCLASS>), and protocol
(<PROT>) — asdecimal values — add the following:

[HKEY_LOCAL_MACHI NE\ Dr i ver s\ USB\ Loaddl i ent s\ Def aul t\ Def aul t\ <CLASS> <SUBCLASS> <PROT>\ V\DR|
"DLL"="wi ndrvr6.dl "

« Cal WDU _I ni t () to identify the device by its vendor and product IDs and register it with
WinDriver, before connecting the device to the computer .

For more information about the relevant registry settings, refer to USB Driver Registry
Settingsin the MSDN Library.

© 2015 Jungo Connectivity Ltd. 54 CONFIDENTIAL

Chapter 7
Debugging Drivers

The following sections describe how to debug your hardware-access application code.

7.1. User-Mode Debugging

» Since WinDriver is accessed from the user mode, we recommend that you first debug your
code using your standard debugging software.

» The Debug Monitor utility [7.2] logs debug messages from WinDriver's kernel-mode and user-
mode APIs. You can also use WinDriver APIs to send your own debug messages to the Debug
Monitor log.

» Use DriverWizard to validate your device's USB configuration and test the communication
with the device.

7.2. Debug Monitor

Debug Monitor is a powerful graphical- and console-mode tool for monitoring all activities
handled by the WinDriver kernel.
Y ou can use this tool to monitor how each command sent to the kernel is executed.

In addition, WinDriver enables you to print your own debug messages to the Debug Monitor,
using the WD_DebugAdd() function [B.6.6] or the high-level Pri nt DogMessage()
function [B.7.14].

The Debug Monitor comesin two versions:

» wddebug_gui [7.2.1] — aGUI version for Windows and Linux.

» wddebug [7.2.2] — aconsole-mode version for Windows, Windows CE, and Linux; on
Windows CE, wddebug also supports GUI execution.

Both Debug Monitor versions are provided in the WinDriver/util directory.

© 2015 Jungo Connectivity Ltd. 55 CONFIDENTIAL

Chapter 7. Debugging Drivers

7.2.1. The wddebug_gui Utility

wddebug_gui isafully graphical (GUI) version of the Debug Monitor utility for Windows and
Linux.

1. Run the Debug Monitor using either of the following methods:
* Run WinDriver/util/wddebug_gui.
* Run the Debug Monitor from DriverWizard's T ools menu.
* OnWindows, run Start | Programs | WinDriver | Debug Monitor.

Figure7.1. Start Debug Monitor

DWinDriver Debug Monitor = | Bl S
File Edit Wiew Help

SBeln O

WinDriver Debug Monitor v11.7.0.

Running WinDriver v11.7.0 Jungo Connectivity (c) 1997 - 2014 Build Date: Oct 19 2014 x86_64 64bit 5Y5 16:22:45
05 Windows MT 6. 1 Build 0.0,7601 Service Pack 1

Time: Maon Oct 20 13:06:46 2014

2. Set the Debug Monitor's status, trace level and debug sections information from the Debug
Options dialogue, which is activated either from the Debug Monitor's View | Debug Options
menu or the Debug Options toolbar button.

© 2015 Jungo Connectivity Ltd. 56 CONFIDENTIAL

Chapter 7. Debugging Drivers

Figure 7.2. Debug Options

Debug Options

Section
¥ 1f0 ¥| PrP
| Memary V| Kernel Plugln
| Interrupts

Status P | Miscellaneous
¥ | PCI
V| PCMCIA

| Card Registration
Off | 7| 1SA PnP ?

7] usa | Kernel Driver
7| DMA | Events
| All Sections

Level

Error Warn Info @ Trace

Send debug messages to the operating system kernel debugger

oK l | Cancel

» Status— Set trace on or off.
» Section — Choose what part of the WinDriver APl you would like to monitor.

USB developers should select the USB section.

€ f Choose carefully those sections that you would like to monitor. Checking more
- options than necessary could result in an overflow of information, making it harder
for you to locate your problem.

» Level — Choose the level of messages you want to see for the resources defined.
« Error isthe lowest trace level, resulting in minimum output to the screen.

« Traceisthe highest trace level, displaying every operation the WinDriver kernel
performs.

» Send debug messages to the oper ating system kernel debugger —

Select this option to send the debug messages received from the WinDriver kernel module
to an external kernel debugger, in addition to the Debug Monitor.

© 2015 Jungo Connectivity Ltd. 57 CONFIDENTIAL

Chapter 7. Debugging Drivers

On Windows Vista and higher, the first time that you enable this option you will
need to restart the PC.

A free Windows kernel debugger, WinDbg, is distributed with the Windows Driver
- Kit (WDK) and is part of the Debugging Tools for Windows package, distributed via
the Microsoft web site.

3. Once you have defined what you want to trace and on what level, click OK to close the
Debug Options window.

4. Optionally make additional configurations via the Debug Monitor menus and toolbar.

©) When debugging OS crashes or hangs, it's useful to auto-save the Debug Monitor log,
- viathe File— Toggle Auto-Save menu option (available also viaatoolbar icon), in
addition to sending the debug messages to the OS kernel debugger (see Step 2).

5. Run your application (step-by-step or in one run).

&) Y ou can use the Edit = Add Custom M essage... menu option (available also viaa
- toolbar icon) to add custom messages to the log. Thisis especialy useful for clearly
marking different execution sectionsin the log.

6. Watch the Debug Monitor log (or the kernel debugger log, if enabled) for errors or any
unexpected messages.

7.2.1.1. Running wddebug_gui for a Renamed Driver

By default, wddebug_gui logs messages from the default WinDriver kernel module —
windrvr6.sys/.o/.ko. However, you can also use wddebug_gui to log debug messages from a
renamed version of thisdriver [11.2], by running wddebug_gui from the command line with the
dri ver _name argument: wddebug_gui <dri ver _nane>.

The driver name should be set to the name of the driver file without the file's extension;

I e.g., windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

For example, if you have renamed the default windrvr 6.sys driver on Windows to
my_driver.sys, you can log messages from your driver by running the Debug Monitor using the
following command: wddebug_gui ny_dri ver

7.2.2. The wddebug Utility

7.2.2.1. Console-Mode wddebug Execution

The wddebug version of the Debug Monitor utility can be executed as a console-mode
application on al supported operating systems: Windows, Windows CE, and Linux. To usethe

© 2015 Jungo Connectivity Ltd. 58 CONFIDENTIAL

Chapter 7. Debugging Drivers

console-mode Debug Monitor version, run WinDriver/util/wddebug in the manner explained
below.

For console-mode execution on Windows CE, start a command window (CM D.EXE) on
the Windows CE target, and then run the program WDDEBUG.EXE inside this shell.
Y ou can aso execute wddebug viathe Windows CE GUI, as explained in Section 7.2.2.2.

wddebug console-mode usage

wddebug [<driver_name>] [<command>] [<level>] [<sections>]

The wddebug arguments must be provided in the order in which they appear in the usage
statement above.

* <dri ver _name>— The name of the driver to which to apply the command.

The driver name should be set to the name of the WinDriver kernel module — windrvr 6
(default), or arenamed version of this driver (refer to the explanation in Section 11.2).

The driver name should be set to the name of the driver file without the file's extension;

I for example, windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

» <conmmand> — The Debug Monitor command to execute:
= Activation commands:
* on — Turn the Debug Monitor on.
» of f — Turn the Debug Monitor off.

» dbg_on — Redirect the debug messages from the Debug Monitor to akernel debugger
and turn the Debug Monitor on (if it was not already turned on).

On Windows Vista and higher, the first time that you enable this option you will
need to restart the PC.

» dbg_of f — Stop redirecting debug messages from the Debug Monitor to a kernel
debugger.

Theon and dbg_on commands can be used together with the <l evel > and
<sect i ons> arguments.

« dunmp — Continuously send ("dump™) debug information to the command prompt, until the
user selectsto stop (by following the instructions displayed in the command prompt).

« St at us — Display information regarding the running driver (<dr i ver _nane>), the
current Debug Monitor status — including the active debug level and sections (when the
Debug Monitor is on) — and the size of the debug-messages buffer.

© 2015 Jungo Connectivity Ltd. 59 CONFIDENTIAL

Chapter 7. Debugging Drivers

« cl ock_on — Add atimestamp to each debug message. The timestamps are relative to the
driver-load time, or to the time of thelast cl ock_r eset command.

« cl ock_of f — Do not add timestamps to the debug messages.
« cl ock_reset — Reset the debug-messages timestamps clock.
« sect _i nf o_on — Add section(s) information to each debug message.
« sect i nfo_of f — Do not add section(s) information to the debug messages.
= hel p — Display usage instructions.
= No arguments (including no commands) — On platforms other than Windows CE, thisis
equivaent to running 'wddebug hel p'; on Windows CE, it activates the utility's Windows
CE GUI version, as explained in Section 7.2.2.2.
The following arguments are applicable only with the on or dbg_on commands:
» <| evel >— Thedebug trace level to set — one of the following flags: ERROR, WARN, | NFO,

or TRACE (default).
ERRCR isthe lowest trace level and TRACE is the highest level (displays all messages).

When the <sect i ons> argument is set, the <| evel > argument must be set as well
(no default).

» <secti ons>— The debug sections— i.e., the WinDriver APl sections— to monitor.
This argument can be set either to ALL (default) — to monitor all the supported debug sections
— or to aquoted string that contains a combination of any of the supported debug-section flags
(run‘'wddebug hel p'to seethefull list).

Usage Sequence
To log messages using wddebug, use the following sequence:

» Turn on the Debug Monitor by running wddebug with either the on or dbg_on command;
the latter redirects the debug messages to the OS kernel debugger before turning on the Debug
Monitor.

You can usethe<l| evel > and <sect i ons> arguments to set the debug level and sections
for the log. If these arguments are not explicitly set, the default values will be used; (note that if
you set the sections you must also set the level).

Y ou can aso log messages from arenamed WinDriver driver by preceding the command with
the name of the driver (default: windrvr6) — seethe <dr i ver _nane> argument.

© 2015 Jungo Connectivity Ltd. 60 CONFIDENTIAL

Chapter 7. Debugging Drivers

* If you did not select to redirect the debug messages to the OS kernel debugger (using the
dbg_on command), run wddebug with the dunp command to begin dumping debug
messages to the command prompt.

Y ou can turn off the display of the debug messages, at any time, by following the instructions
displayed in the command prompt.

* Run applications that use the driver, and view the debug messages as they are being logged to
the command prompt/the kernel debugger.

» At any time while the Debug Monitor is running, you can run wddebug with the following
commands:

« status,clock on,clock off,clock reset,sect _info_on,or
sect _info_off,

= on or dbg_on with different <I evel > and/or <sect i ons> arguments

« dbg_on anddbg_of f — to toggle the redirection of debug messages to the OS kernel
debugger

« dunp — to start anew dump of the debug log to the command prompt; (the dump can be
stopped at any time by following the instructions in the prompt)

» When you are ready, turn off the Debug Monitor by running wddebug with the of f command.

. The st at us command can be used to view information regarding the running
U WinDriver driver even when the Debug Monitor is off.
Example

The following is an example of atypical wddebug usage sequence. Since no <dr i ver _nane>
is set, the commands are applied to the default driver — windrvr6.

» Turn the Debug Monitor on with the highest trace level for al sections:
wddebug on TRACE ALL

, Thisisthe same asrunning ‘'wddebug on TRACE, because ALL isthe default
W csections> value

» Dump the debug messages continuously to the command prompt, until the user selects to stop:
wddebug dunp

» Usethedriver and view the debug messages in the command prompt.

» Turn the Debug Monitor off:
wddebug of f

© 2015 Jungo Connectivity Ltd. 61 CONFIDENTIAL

Chapter 7. Debugging Drivers

7.2.2.2. Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by running wddebug without any arguments.
This method is designed to enable debug logging on Windows CE platforms that do not have a
command-line prompt. On such platforms, you can activate debug logging by double-clicking
the wddebug executable; thisis equivalent to running the application with no arguments from a

command-line prompt.

When executing wddebug without arguments, the user isinformed, viaa GUI message box, that
log messages will be stored in a predetermined log file — wdlog.txt in the root Windows CE
directory — and is given the option to cancel or continue.

Figure 7.3. wddebug Windows CE Start Log M essage

=,

rwddebug

i Press OK to start logging debug messages.
\;) The messages will be saved to wdlog. tt in the root Windows CE directory,

oK Cancel

If the user selects to continue, debug logging isturned on with atrace level of TRACE and debug
sections AL L, and the Debug Monitor begins dumping debug messages to the wdlog.txt log
file. The user can stop the logging and turn off debug logging, at any time, via a dedicated GUI

message box.
Figure 7.4. wddebug Windows CE Stop L og M essage

=,

rwddebug

\]}) Press OK to stop logging

© 2015 Jungo Connectivity Ltd. 62 CONFIDENTIAL

Chapter 8
USB Transfers

8.1. Overview

This chapter provides detailed information regarding implementation of USB transfers using
WinDriver.

As explained in Section 3.5, the USB standard supports two kinds of data exchange between the
host and the device — control exchange and functional data exchange.
The WinDriver APIs enable you to implement both control and functional data transfers.

Figure 8.1 demonstrates how a device's pipes are displayed in the DriverWizard utility, which
enables you to perform transfers from a GUI environment.

Figure8.1. USB Data Exchange

Alternate Setting 2: Number of Endpoints 2

Pipe Name Pipe Type Information
Control Pipe
I:F'ipe a0) ——|] e Ox0 Control direction: in & out, packet size: 64

o T

Functional Pipes

(Bulk [Interrupt / 3 |pipe Ox6 Bulk direction: out, packet size: 512

Isochronous)

l Listen to Pipe “ Resat Pipe l

Section 8.2 below provides detailed information regarding USB control transfers and how they
can be implemented using WinDriver.

Section 8.3 describes the functional data transfer implementation options provided by WinDriver.

© 2015 Jungo Connectivity Ltd. 63 CONFIDENTIAL

Chapter 8. USB Transfers

8.2. USB Control Transfers

8.2.1. USB Control Transfers Overview

8.2.1.1. Control Data Exchange

USB control exchange is used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

Control exchange takes place via a control pipe — the default pipe 0, which always exists. The
control transfer consists of a setup stage (in which a setup packet is sent from the host to the
device), an optional data stage and a status stage.

8.2.1.2. More About the Control Transfer

The control transaction always begins with a setup stage. The setup stage is followed by zero or
more control data transactions (data stage) that carry the specific information for the requested
operation, and finally a status transaction completes the control transfer by returning the status to
the host.

During the setup stage, an 8-byte setup packet is used to transmit information to the control
endpoint of the device (endpoint 0). The setup packet's format is defined by the USB
specification.

A control transfer can be aread transaction or awrite transaction. In aread transaction the setup
packet indicates the characteristics and amount of datato be read from the device. In awrite
transaction the setup packet contains the command sent (written) to the device and the number of
control data bytes that will be sent to the device in the data stage.

Refer to Figure 8.2 (taken from the USB specification) for a sequence of read and write
transactions.

'(in)" indicates data flow from the device to the host.

'(out)" indicates data flow from the host to the device.

© 2015 Jungo Connectivity Ltd. 64 CONFIDENTIAL

Chapter 8. USB Transfers

Figure8.2. USB Read and Write

setup Drata Stage
Stage {Cptional) Status
LN 5
Conirol a ™
Write SETUF DATA [ouf) DATA [ouf) DATA [ouf) atus (@)
Setup LDrata Stage
Stﬂ.gﬁ (OPJES?EI) Status
— "
Contwol SETTF DATS @y | | DATA@) | | DATA @) | | Swws ot
FKead
setup Status
Stage
D G W,
Ne-data SETUF Status ()
Coniroel

8.2.1.3. The Setup Packet

The setup packets (combined with the control data stage and the status stage) are used to
configure and send commands to the device. Chapter 9 of the USB specification defines standard
device requests. USB requests such as these are sent from the host to the device, using setup
packets. The USB deviceisrequired to respond properly to these requests. In addition, each
vendor may define device-specific setup packets to perform device-specific operations. The
standard setup packets (standard USB device requests) are detailed below. The vendor's device-
specific setup packets are detailed in the vendor's data book for each USB device.

8.2.1.4. USB Setup Packet Format

The table below shows the format of the USB setup packet. For more information, please refer to
the USB specification at http://www.usb.org.

Byte | Field Description
0 | bmRequest Type | Bit 7: Request direction (O=Host to device — Out, 1=Device to host
—1n).

Bits 5-6: Request type (O=standard, 1=class, 2=vendor, 3=reserved).
Bits 0-4: Recipient (O=device, 1=interface, 2=endpoint,3=other).

1 | bRequest The actual request (see the Standard Device Request Codes
table[8.2.1.5].
2 | wVaueL A word-size value that varies according to the request. For example,

in the CLEAR_FEATURE request the value is used to select the
feature, in the GET_DESCRI PTOR request the value indicates
the descriptor type and in the SET_ ADDRESS request the value
contains the device address.

3 |wVaueH The upper byte of the Val ue word.

© 2015 Jungo Connectivity Ltd. 65 CONFIDENTIAL

http://www.usb.org

Chapter 8. USB Transfers

Byte | Field

Description

4 | windexL

A word-size value that varies according to the request. Theindex is
generally used to specify an endpoint or an interface.

windexH The upper byte of the | ndex word.
wLengthL A word-size value that indicates the number of bytes to be
transferred if there is a data stage.
7 | wLengthH The upper byte of the Lengt h word.

8.2.1.5. Standard Device Request Codes

The table below shows the standard device request codes.

bRequest

Value

GET_STATUS

0

CLEAR_FEATURE

Reserved for future use

SET_FEATURE

Reserved for future use

SET_ADDRESS

GET_DESCRIPTOR

SET_DESCRIPTOR

GET_CONFIGURATION

SET_CONFIGURATION

Ol | Nl bd|W|IDN|PF

GET_INTERFACE

=
o

SET_INTERFACE

|
|

SYNCH_FRAME

=
N

8.2.1.6. Setup Packet Example

This example of a standard USB device request illustrates the setup packet format and itsfields.
The setup packet isin Hex format.

The following setup packet is for a control read transaction that retrieves the device descriptor
from the USB device. The device descriptor includes information such as USB standard revision,

vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

80 | 06 | 00O | O1 | OO | OO

12

00

Setup packet meaning:

© 2015 Jungo Connectivity Ltd.

66

CONFIDENTIAL

Chapter 8. USB Transfers

Byte | Field Value | Description
0 |BmRequest Type | 80 | 8h=1000b

bit 7=1 -> direction of datais from device to host.
Oh=0000b

bits 0..1=00 -> the recipient is the device.

1 | bRequest 06 | The Requestis GET_DESCRIPTOR.

2 | wValueL 00

3 |wVaueH 01 | Thedescriptor typeis device (values defined in USB spec).

4 | windexL 00 | Theindex isnot relevant in this setup packet since thereis
only one device descriptor.

windexH 00

6 | wLengthL 12 | Length of the datato be retrieved: 18(12h) bytes (thisisthe
length of the device descriptor).

7 | wLengthH 00

In response, the device sends the device descriptor data. A device descriptor of the Cypress
EZ-USB Integrated Circuit is provided as an example:

ByteNo. | 0 | 1| 2|3 |4 |5 |6/|7]|8]09]10]
Content | 12 | 0L | 00 | 01 | ff | ff | ff | 40 | 47 | 05 | 80 |

ByteNo. | 11 | 12 | 13 | 14 | 15 | 16 | 17
Content 00O | 01 0O | 0O | OO | OO | 01

Asdefined in the USB specification, byte O indicates the length of the descriptor, bytes 2-3
contain the USB specification release number, byte 7 is the maximum packet size for the control
endpoint (endpoint 0), bytes 8-9 are the vendor ID, bytes 10-11 are the product ID, etc.

8.2.2. Performing Control Transfers with WinDriver

WinDriver alows you to easily send and receive control transfers on the control pipe (pipe
0), while using DriverWizard to test your device. You can either use the API generated by
DriverWizard [5] for your hardware, or directly call the WinDriver WDU_Tr ansf er ()
function [B.4.8.1] from within your application.

8.2.2.1. Control Transfers with DriverWizard

1. Choose Pipe 0x0 and click the Read / Write button.

2. You can either enter a custom setup packet, or use a standard USB request.

© 2015 Jungo Connectivity Ltd. 67 CONFIDENTIAL

Chapter 8. USB Transfers

» For acustom request: enter the required setup packet fields. For awrite transaction that
includes a data stage, enter the datain the Write to pipe data (Hex) field. Click Read
From Pipe or Write To Pipe according to the required transaction (see Figure 8.3).

Figure 8.3. Custom Request

[:: Pipe 0 - Control

Setup Packet

Type Request wialue wIndex wLength

Qo 0 0oaa0 0 0

00 Q0 00 00 00 00 00 04

Action

[Write to Pipe] Read from Fipe

’ Clear] ’ Save Write Data]
Pipe to File ’ File to Pipe]

o sl

Write to pipe data (Hex):

» For astandard USB request: select a USB request from the requests list, which includes
requests such as GET_DESCRIPTOR CONFIGURATION, GET_DESCRIPTOR
DEVICE, GET_STATUSDEVICE, etc. (see Figure 8.4). The description of the selected
request will be displayed in the Request Description box on the right hand of the dialogue

window.

Figure 8.4. Request List

[:: Pipe 0 - Control

Setup Packet

Write to pipe data (Hex):

(2 |l

Custom reguest

GET_DESCRIPTOR. - CONFIGLIRATION
GET_DESCRIFTOR. - DEVICE
GET_DESCRIFTOR. - STRING
GET_STATUS - DEVICE

GET_STATUS - EMNDPOINT
GET_STATUS - INTERFACE

Action

[Write to Pipe] Read from Pipe

’ Clear] [Save Write Data]
Fipe to File [File to Pipe]

© 2015 Jungo Connectivity Ltd. 68

CONFIDENTIAL

Chapter 8. USB Transfers

3. Theresults of the transfer, such as the data that was read or arelevant error, are displayed in
Driver Wizard's L og window.
Figure 8.5, below, shows the contents of the L og window after a successful
GET_DESCRIPTOR DEVICE request.

Figure 8.5. USB Request Log

Information Panel & X

1201000200000040B40403 1000000102 |....... @........
0001 l..
Transferred 18 bytes

Log Output Description

8.2.2.2. Control Transfers with WinDriver API

To perform aread or write transaction on the control pipe, you can either use the API generated
by DriverWizard for your hardware, or directly call the WinDriver WDU_Tr ansf er ()
function [B.4.8.1] from within your application.

Fill the setup packet inthe BYTE Set upPacket [8] array and call these functions to send
setup packets on the control pipe (pipe 0) and to retrieve control and status data from the device.

» Thefollowing sample demonstrates how to fill the Set upPacket [8] variablewith a
CET_DESCRI PTOR setup packet:

set upPacket [0] = 0x80; /* BnRequst Type */

set upPacket [6]
set upPacket [7]

set upPacket [1] = 0x6; /* bRequest [O0x6 == GET_DESCRI PTOR] */

set upPacket[2] = O; /* wval ue */

set upPacket [3] = Ox1; /* wWal ue [Descriptor Type: Ox1 == DEVICE] */
set upPacket[4] = O; /* w ndex */

set upPacket[5] = O; /* w ndex */

0x12; /* wLength [Size for the returned buffer] */

0; /* wLength */

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a GET
instruction; the device will return the information requested in the pBuf f er variable):

WDU_Tr ansf er Def aul t Pi pe(hDev, TRUE, 0, pBuffer, dwsSize,
bytes_transferred, &setupPacket[0], 10000);

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a SET
instruction):

WDU_Tr ansf er Def aul t Pi pe(hDev, FALSE, 0, NULL, O,
bytes_transferred, &setupPacket[0], 10000);

For further information regarding WDU_Tr ansf er Def aul t Pi pe(), refer to Section B.4.8.3.
For further information regarding WDU_Tr ansf er (), refer to Section B.4.8.1.

© 2015 Jungo Connectivity Ltd. 69 CONFIDENTIAL

Chapter 8. USB Transfers

8.3. Functional USB Data Transfers

8.3.1. Functional USB Data Transfers Overview

Functional USB data exchangeis used to move datato and from the device. There are three
types of USB data transfers: Bulk, Interrupt and Isochronous , which are described in detail in
Sections 3.6.2—3.6.4 of the manual.

Functional USB data transfers can be implemented using two alternative methods:. single-
blocking transfers and streaming transfers, both supported by WinDriver, as explained in the
following sections. The generated DriverWizard USB code [5.2.1] and the generic WinDriver/
util/usb_diag.exe utility [1.9.2] (source code located under the WinDriver/samples/usb_diag
directory) enable the user to select which type of transfer to perform.

8.3.2. Single-Blocking Transfers

In the single-blocking USB data transfer scheme, blocks of data are synchronously transferred
(hence — "blocking") between the host and the device, per request from the host (hence —
"single" transfers).

8.3.2.1. Performing Single-Blocking Transfers with
WinDriver

WinDriver's\WDU_Tr ansf er () function, and the WDU_Tr ansf er Bul k(),

WDU_Tr ansf erl soch(),and WDU_Tr ansf er | nt er r upt () convenience functions — all
described in Section B.4.8 of the manual — enable you to easily impelment single-blocking USB
data transfers.

Y ou can aso perform single-blocking transfers using the DriverWizard utility (which uses the
WDU_Tr ansf er () function), as demonstrated in Section 5.2 of the manual.

8.3.3. Streaming Data Transfers

In the streaming USB data transfer scheme, data is continuously streamed between the host and
the device, using internal buffers allocated by the host driver — "streams’.

Stream transfers allow for a sequential data flow between the host and the device, and can be used
to reduce single-blocking transfer overhead, which may occur as aresult of multiple function calls
and context switches between user and kernel modes. Thisis especially relevant for devices with
small data buffers, which might, for example, overwrite data before the host is able to read it, due
to agap in the data flow between the host and device.

© 2015 Jungo Connectivity Ltd. 70 CONFIDENTIAL

Chapter 8. USB Transfers

8.3.3.1. Performing Streaming with WinDriver

WinDriver's WDU_St r eanXXX() functions, described in Section B.4.9 of the manual, enable
you to impelment USB streaming data transfers. Note: These functions are currently supported on
Windows and Windows CE.

To begin performing stream transfers, call the WDU_St r eamOpen() function [B.4.9.1]. When
this function is called, WinDriver creates a new stream object for the specified data pipe. You can
open a stream for any pipe except for the control pipe (pipe 0). The stream'’s data transfer direction
— read/write — is derived from the direction of its pipe.

WinDriver supports both blocking and non-blocking stream transfers. The open function's

f Bl ocki ng parameter indicates which type of transfer to perform (see explanation below).
Streams that perform blocking transfers will henceforth be referred to as "blocking streams”*, and
streams that perform non-blocking transfers will be referred to as "non-blocking streams”.

The function's dWRX Tx Ti meout parameter indicates the desired timeout period for transfers
between the stream and the device.

After opening astream, call WDU_St r eantst ar t () [B.4.9.2] to begin data transfers between the
stream's data buffer and the device.

In the case of aread stream, the driver will constantly read data from the device into the

stream's buffer, in blocks of a pre-defined size (as set in the dWRx Si ze parameter of the
WDU_St r eamOpen() function [B.4.9.1]. In the case of awrite stream, the driver will constantly
check for datain the stream's data buffer and write any data that is found to the device.

To read data from aread stream to the user-mode host application, call

WDU_St r eanRead() [B.4.9.3].

In case of ablocking stream, the read function blocks until the entire amount of data requested by
the application is transferred from the stream to the application, or until the stream'’s attempt to
read data from the device times out.

In the case of anon-blocking stream, the function transfers to the application as much of the
requested data as possible, subject to the amount of data currently available in the stream's data
buffer, and returns immediately.

To write data from the user-mode host application to a write the stream, call

WDU StreamNite() [B.4.9.4].

In case of ablocking stream, the function blocks until the entire datais written to the stream, or
until the stream's attempt to write data to the device times out.

In the case of a non-blocking stream, the function writes as much of the write data as currently
possible to the stream, and returns immediately.

For both blocking and non-blocking transfers, the read/write function returns the amount of bytes
actually transferred between the stream and the calling application within an output parameter —
*pdwByt esRead [B.4.9.3] / * pdwByt esW i tt en [B.4.9.4].

Y ou can flush an active stream at any time by calling the WDU_St r eant| ush()

function [B.4.9.5], which writes the entire contents of the stream'’s data buffer to the device (for a
write stream), and blocks until all pending I/O for the stream is handled.

Y ou can flush both blocking and non-blocking streams.

© 2015 Jungo Connectivity Ltd. 71 CONFIDENTIAL

Chapter 8. USB Transfers

You can cal WDU_St r eamGet St at us() [B.4.9.6] for any open stream in order to get the
stream'’s current status information.

To stop the data streaming between an active stream and the device, call

WDU_St r eantst op() [B.4.9.7]. In the case of awrite stream, the function flushes the stream —
i.e., writes its contents to the device — before stopping it.

An open stream can be stopped and restarted at any time until it is closed.

To close an open stream, call WDU_St r eanCl ose() [B.4.9.8].

The function stops the stream, including flushing its data to the device (in the case of awrite
stream), before closing it.

Note: Each call to WDU_St r eanOpen() must have a matching call to WDU_St r eanCl ose()
later on in the code in order to perform the necessary cleanup.

© 2015 Jungo Connectivity Ltd. 72 CONFIDENTIAL

Chapter 9
Dynamically Loading Your Driver

9.1. Why Do You Need a Dynamically
Loadable Driver?

When adding a new driver, you may be required to reboot the system in order for it to load your
new driver into the system. WinDriver isadynamically loadable driver, which enables your
customersto start your application immediately after installing it, without the need for reboot.

To successfully unload your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 11.2), and that
there are no connected and enabled Plug-and-Play devices that are registered with this
service.

9.2. Windows Dynamic Driver Loading

Windows XP and higher uses Windows Driver Model (WDM) drivers[2.3.1]: Files with the
extension *.sys (e.g., windrvr6.sys).
WDM drivers areinstalled viathe installation of an INF file (see below).

The WinDriver Windows kernel module — windrvr6.sys— isafully WDM driver, which can
be installed using the wdr eg utility, as explained in the following sections.

9.2.1. The wdreg Utility

WinDriver provides a utility for dynamically loading and unloading your driver, which replaces
the slower manual process using Windows' Device Manager (which can still be used for the
device INF). This utility is provided in two forms: wdreg and wdreg_gui. Both versions can be
found in the WinDriver\util directory, can be run from the command line, and provide the same
functionality. The differenceisthat wdreg_gui displays installation messages graphically, while
wdr eg displays them in console mode.

This section describes the use of wdreg/ wdreg_gui on Windows operating systems.

© 2015 Jungo Connectivity Ltd. 73 CONFIDENTIAL

Chapter 9. Dynamically Loading Your Driver

1. wdreg is dependent on the Driver Install Frameworks APl (DIFXAPI) DLL —
difxapi.dll, unless when run with the - conpat option (described below). difxapi.dll
is provided under the WinDriver\util directory.

2. The explanations and examples below refer to wdr eg, but any references to wdreg can
be replaced with wdreg_gui.

9.2.1.1. Overview

This section explains how to use the wdr eg utility to install the WDM windrvr 6.sys driver, or to
install INF files that register USB devicesto work with this driver, on Windows.

% You can rename the windrvr 6.sys kernel module and modify your device INF file to
register with your renamed driver, as explained in Section 11.2.1. To install your modified
INF files using wdr eg, simply replace any references to windrvr 6 below with the name of
your new driver.

Usage: The wdreg utility can be used in two ways as demonstrated below:

l.wdreg -inf <filename> [-silent] [-l1og <logfile>]
[install | preinstall | uninstall | enable | disable]

2. wdreg -rescan <enunerator> [-silent] [-log <logfile>]

* OPTIONS
wdr eg supports several basic OPTIONS from which you can choose one, some, or none:

« -inf — The path of the INF file to be dynamically installed.

« -rescan <enumerator>— Rescan enumerator (ROOT, USB, etc.) for hardware changes.
Only one enumerator can be specified.

« -silent — Suppress display of all messages (optional).
« -log <logfile> — Log all messages to the specified file (optional).

« -compat — Use the traditional SetupDi API instead of the newer Driver Install Frameworks
API (DIFXAPI).

* ACTIONS
wdr eg supports several basic ACTIONS:

« install — Installsthe INF file, copies the relevant filesto their target locations, and
dynamically loads the driver specified in the INF file name by replacing the older version (if
needed).

« prenstall Pre-installsthe INF file for a non-present device.

© 2015 Jungo Connectivity Ltd. 74 CONFIDENTIAL

Chapter 9. Dynamically Loading Your Driver

« uninstall — Removes your driver from the registry so that it will not load on next boot (see
note below).

= enable— Enables your driver.

« disable— Disablesyour driver, i.e., dynamically unloadsiit, but the driver will reload after
system boot (see note below).

To successfully disable/uninstall your driver, make sure that there are no open handles to
the WinDriver service (windrvr 6.sys or your renamed driver (refer to Section 11.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with this
service.

9.2.2. Dynamically Loading/Unloading windrvr6.sys
INF Files

When using WinDriver, you develop a user-mode application that controls and accesses your
hardware by using the generic windrvr6.sys driver (WinDriver's kernel module). Therefore, you
might want to dynamically load and unload the driver windrvr 6.sys — which you can do using
wdreg.

In addition, in WDM-compatible operating systems, you also need to dynamically load INF files
for your Plug-and-Play devices. wdreg enables you to do so automatically on Windows.

This section includes wdr eg usage examples, which are based on the detailed description of

wdr eg contained in the previous section.

» Toload windrvr6.inf and start the windrvr 6.sys service —
wdreg -inf <path to windrvr6.inf> install

» Toload an INF file named device.inf, located in the c:\tmp directory —
wdreg -inf c:\tnp\device.inf install

You canreplacethei nst al | option in the example above with pr ei nst al | to pre-instal
the device INF file for adevice that is not currently connected to the PC.

If the installation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE

\ M cr osof t \ Wndows\ Curr ent Ver si on. Thisregistry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

To unload the driver/INF file, use the same commands, but simply replacei nst al | inthe
examples above withuni nst al | .

© 2015 Jungo Connectivity Ltd. 75 CONFIDENTIAL

Chapter 9. Dynamically Loading Your Driver

9.3. Linux Dynamic Driver Loading

; Thefollowing commands must be executed with root privileges.

» Todynamically load WinDriver, run the following command:
<path to wdreg> w ndrvr6

* Todynamically unload WinDriver, run the following command:
[sbi n/ mrodprobe -r w ndrvr6.

wdreg isprovided in the WinDriver/util directory.

@

©) To automatically load WinDriver on each boot, add the following line to the target's Linux
- boot file (for example, /etc/rc.local):
<path to wdreg> w ndrvr6

9.4. Windows CE Dynamic Driver Loading

The WinDriver\redist\Windows _Mobile 5 ARMV4l\wdreg.exe utility can be used for loading
the WinDriver kernel module (windrvr 6.dll) on a Windows CE platform.

©) On many versions of Windows CE, the operating system's security scheme prevents the
- loading of unsigned drivers at boot time, therefore the WinDriver kernel module has to be
reloaded after boot. To load WinDriver on the target Windows CE platform every time the
OSis started, copy the wdr eg.exe utility to the Windows\StartUp directory on the target
PC.

The source code of the Windows CE wdr eg.exe utility is available under the
WinDriver\samples\wince_install\wdreg directory on the development PC.

© 2015 Jungo Connectivity Ltd. 76 CONFIDENTIAL

Chapter 10
Distributing Your Driver

. Read this chapter in the final stages of driver development. It will guide you in preparing
U your driver for distribution.

10.1. Getting a Valid WinDriver License

Before distributing your driver you must purchase a WinDriver license, asoutlined in

Appendix E.

Then install the registered version of WinDriver on your development machine by following the
installations in Section 4.2. If you have already installed an evaluation version of WinDriver, you
can jump directly to the installation steps for registered users to activate your license.

To register code devel oped during the evaluation period of WinDriver, follow the instructionsin
Section 4.3.

10.2. Windows Driver Distribution

 All references to wdreg in this section can be replaced with wdreg_gui, which offers
the same functionality as wdreg but displays GUI messages instead of console-mode

messages.

* If you have renamed the WinDriver kernel module (windrvr 6.sys), as explained in
Section 11.2, replace the relevant windr vr 6 references with the name of your driver,
and replace references to the WinDriver\redist directory with the path to the directory
that contains your modified installation files. For example, when using the generated
DriverWizard renamed driver files for your driver project, as explained in Section 11.2.1,
you can replace references to the WinDriver\redist directory with references to the
generated xxx_installation\redist directory (where xxx is the name of your generated
driver project). Note also the option to simplify the installation using the generated
DriverWizard xxx_install.bat script and the copies of the WinDriver\util installation
filesin the generated xxx_installation\redist directory, as explained in Section 11.2.1.

* If you have created new INF and/or catalog files for your driver, replace the referencesto
the original WinDriver INF files and/or to the wd1180.cat catal og file with the names of
your new files (see the file renaming information in Sections 11.2.1 and 11.3.2).

Distributing the driver you created is a multi-step process. First, create a distribution package that
includes all the files required for the installation of the driver on the target computer. Second,
install the driver on the target machine. Thisinvolvesinstalling windrvr 6.sys and windrvr 6.inf,
and installing the specific INF file for your device.

© 2015 Jungo Connectivity Ltd. 7 CONFIDENTIAL

Chapter 10. Distributing Your Driver

Finally, you need to install and execute the hardware-control application that you devel oped with
WinDriver. These steps can be performed using wdr eg utility.

10.2.1. Preparing the Distribution Package

Prepare a distribution package that includes the following files.

If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare separate distribution packages for each platform. The required files for each
package are provided in the WinDriver installation directory for the respective platform.

* Your hardware-control application/DLL.

* windrvr6.sys.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

* windrvr6.inf.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wd1180.cat.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wdapi1180.dll (for distribution of 32-bit binariesto 32-bit target platforms or for distribution
of 64-bit binariesto 64-bit platforms) or wdapi1180 32.dll (for distribution of 32-bit binaries
to 64-bit platforms[A.2].

Get thisfile from the WinDriver\redist directory of the WinDriver package.

« difxapi.dll (required by the wdreg.exe utility [9.2.1]).
Get thisfile from the WinDriver\util directory of the WinDriver package.

* AnINFfilefor your device.
Y ou can generate this file with DriverWizard, as explained in Section 5.2.

10.2.2. Installing Your Driver on the Target
Computer

, Driver installation on Windows requires administrator privileges.

Follow the instructions below in the order specified to properly install your driver on the target
computer:

© 2015 Jungo Connectivity Ltd. 78 CONFIDENTIAL

Chapter 10. Distributing Your Driver

e Preliminary Steps:
To successfully install your driver, make sure that there are no open handles to the WinDriver
service (windrvr 6.sys or your renamed driver (refer to Section 11.2), and that there are no
connected and enabled Plug-and-Play devices that are registered with this service. Thisis
relevant, for example, when upgrading the version of the driver (for WinDriver v6.0.0 and
above; earlier versions used a different module name). If the service is being used, attempts
to install the new driver using wdreg will fail. Y ou can disable or uninstall connected devices
from the Device Manager (Properties | Disable/Uninstall) or using wdr eg, or otherwise
physically disconnect the device(s) from the PC.

e |nstall WinDriver'skernel module:

1. Copy windrvr6.sys, windrvr6.inf, and wd1180.cat to the same directory.

wd1180.cat contains the driver's Authenticode digital signature. To maintain the
signature's validity this file must be found in the same installation directory as the
windrvr6.inf file. If you select to distribute the catalog and INF filesin different
directories, or make any changes to these files or to any other files referred to by the
catalog file (such as windrvr 6.sys), you will need to do either of the following:

» Create anew catalog file and re-sign the driver using thisfile.

» Comment-out or remove the following line in the windrvr 6.inf file:
Cat al ogFi | e=wd1180. cat
and do not include the catalog file in your driver distribution. However, note that
this option invalidates the driver's digital signature.

For more information regarding driver digital signing and certification and the
signing of your WinDriver-based driver, refer to Section 11.3 of the manual.

2. Usethe utility wdreg to install WinDriver's kernel module on the target computer:
wdreg -inf <path to windrvr6.inf> install

For example, if windrvr6.inf and windrvr6.sys arein the d:\MyDevice directory on the
target computer, the command should be:
wdreg -inf d:\MyDevice\w ndrvr6.inf install

Y ou can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For agenera description of this utility and its usage, please refer to Chapter 9.

» wdreg is dependent on the difxapi.dll DLL.

» wdregisaninteractive utility. If it fails, it will display a message instructing the
user how to overcome the problem. In some cases the user may be asked to reboot
the computer.

© 2015 Jungo Connectivity Ltd. 79 CONFIDENTIAL

Chapter 10. Distributing Your Driver

@ When distributing your driver, you should attempt to ensure that the installation

does not overwrite a newer version of windrvr6.sys with an older version of
the filein Windows drivers directory (%o windir % \system32\drivers) — for
example, by configuring your installation program (if you are using one) or
your INF file so that the installer automatically compares the time stamp on
these two files and does not overwrite a newer version with an older one. The
provided windrvr 6.inf file usesthe COPYFLG_NO_VERSI ON_DI ALOGdirective,
which is designed to avoid overwriting afile in the destination directory with the
sourcefileif the existing file is newer than the source file. Thereisalso asimilar
COPYFLG_OVERWRI TE_OLDER_ONLY INF directive that is designed to ensure
that the sourcefileis copied to the destination directory only if the destination
fileis superseded by a newer version. Note, however, that both of these INF
directives are irrelevant to digitally signed drivers. As explained in the Microsoft
INF CopyFiles Directive documentation — http://msdn.microsoft.com/en-us/library/
ff546346%28v=vs.85%29.aspx — if adriver packageis digitaly signed, Windows
installs the package as a whole and does not selectively omit files in the package
based on other versions already present on the computer. The windrvr 6.sys driver
provided by Jungo is digitally signed (refer to Section 11.3 for more information).

* Ingtall the INF filefor your device (registering your Plug-and-Play device with
windrvr 6.sys):

Run the utility wdreg with thei nst al | command to automatically install the INF file and
update Windows Device Manager:
wdreg -inf <path to your INF file> install

Y ou can also use the wdreg utility'spr ei nst al | command to pre-install an INF file for a
device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

If theinstallation failswith an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur r ent Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install driversusing INF files. If the
RunOnce key ismissing, create it; then try installing the INF file again.

 Install wdapi1180.dll:
If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), copy this DLL to the target's
% windir % \system32 directory.
If you are distributing a 32-bit application/DLL to atarget 64-bit platform [A.2], rename
wdapi1180_32.dIl in your distribution package to wdapi1180.dll, and copy the renamed file to
the target's % windir % \sysW OW 64 directory.

© 2015 Jungo Connectivity Ltd. 80 CONFIDENTIAL

http://msdn.microsoft.com/en-us/library/ff546346%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff546346%28v=vs.85%29.aspx

Chapter 10. Distributing Your Driver

If you attempt to write a 32-bit installation program that installs a 64-bit program, and
therefore copies the 64-bit wdapi1180.dll DLL to the % windir % \system32 directory,
you may find that the file is actually copied to the 32-bit % windir % \sysW OW 64
directory. The reason for thisis that Windows x64 platforms trans ate references to
64-bit directories from 32-bit commands into references to 32-bit directories. Y ou can
avoid the problem by using 64-bit commands to perform the necessary installation steps
from your 32-bit installation program. The system64.exe program, provided in the
WinDriver\redist directory of the Windows x64 WinDriver distributions, enables you to
do this.

 Ingtall your hardware-control application/DLL: Copy your hardware-control application/
DLL tothetarget and runit!

10.3. Windows CE Driver Distribution

10.3.1. Distribution to New Windows CE Platforms

The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with the
appropriate Windows CE plugin. The instructions use the notation ‘Windows CE I DE' to
refer to either of these platforms.

To distribute the driver you developed with WinDriver to a new target Windows CE platform,
follow these steps:

1. If you have not already done so, modify the project registry file—
WinDriver\samples\wince_install\project_wd.reg — to add an entry for your target device.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — decimal in the case of USB devices.

2. Compile your Windows CE platform (Sysgen stage).
3. Integrate the driver into your platform:
a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—
WinDriver\redist\<sTARGET_CPU>\windrvr6.dll — to the
% _ FLATRELEASEDIR% subdirectory on the target development platform (should be
the current directory in the new command window).

d. Append the contents of WinDriver\samples\wince _install\project_wd.reg to the
% _FLATRELEASEDIR% \project.reg registry file.

© 2015 Jungo Connectivity Ltd. 81 CONFIDENTIAL

Chapter 10. Distributing Your Driver

e. Copy the contents of the WinDriver\samples\wince install\project_wd.bib
file to the FILES section of the binary image builder file —
% _ FLATRELEASEDIR%\project.bib. Then uncomment the line that matches the
target platform (see the "TODQO" comments in the copied text).

This step is only necessary if you want the WinDriver CE kernel file
(windrvr6.dIl) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using
aboot disk. If you prefer to have the file windrvr 6.dll loaded on demand via
the CESH/PPSH services, you do not need to perform this step until you build a
permanent kernel.

4. Select Make Run-Time Image from the Build menu to save the new image (NK.BIN).

5. Download your new kernel to the target platform and initialize it either by selecting
Attach Device from the Target menu, or by using a boot disk. For Windows CE 4.x, the
menu is called Download/I nitialize rather than Attach Device.

6. Restart your target CE platform. The WinDriver CE kernel will automatically load.

7. Install your hardware-control application/DLL on the target.
If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), also copy thisDLL from the
WinDriver\redist\WINCE\<TARGET_CPU> directory on the Windows host development
PC to the target's Windows directory.

10.3.2. Distribution to Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

1. Copy WinDriver's kernel module — windrvr6.dll — from the
WinDriver\redist\WINCE\<TARGET_CPU> directory on the Windows host devel opment
PC to the Windows directory on your target Windows CE platform.

2. Add WinDriver to the list of device drivers Windows CE loads on boot:

* Modify the registry according to the entries documented in the file
WinDriver\samples\wince_install\project_wd.reg. This can be done using the Windows
CE Pocket Registry Editor on the hand-held CE computer, or by using the Remote CE
Registry Editor Tool supplied with MS eMbedded Visual C++ or MS Visual Studio
2005/2008. Note that in order to use the Remote CE Registry Editor tool you will need to
have Windows CE Services installed on your Windows host platform.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — decimal in the case of USB devices.

© 2015 Jungo Connectivity Ltd. 82 CONFIDENTIAL

Chapter 10. Distributing Your Driver

* On many versions of Windows CE, the operating system's security scheme prevents the
loading of unsigned drivers at boot time, therefore the WinDriver kernel module hasto
be reloaded after boot. To load WinDriver on the target Windows CE platform every time
the OS is started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe
utility to the Windows\StartUp directory on the target PC.

. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will

have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE compulte).

. Install your hardware-control application/DLL on the target.

If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), also copy thisDLL from the
WinDriver\redist\WINCE\<TARGET _CPU> directory on the development PC to the
target's Windows directory.

10.4. Linux Driver Distribution

To distribute your driver, prepare a distribution package containing the required files— as
outlined in Section 10.4.1 — and then build and install the required driver components on the
target — as outlined in Sections 10.4.2-10.4.3.

* If you have renamed the WinDriver driver modules[11.2], replace references to
windrvr 6 in the following instructions with the name of your renamed driver module.

* Itisrecommended that you supply an installation shell script to automate the build and
installation processes on the target.

10.4.1. Preparing the Distribution Package

Prepare a distribution package containing the required files, as described in this section.

* If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare separate distribution packages for each platform. The required files for each
package are provided in the WinDriver installation directory for the respective platform.

* Inthefollowing instructions, <source_dir> represents the source directory from which
to copy the distribution files. The default source directory is your WinDriver installation
directory. However, if you have renamed the WinDriver driver modules [11.2], the
source directory is a directory containing modified files for compiling and installing
the renamed drivers; when using DriverWizard to generate the driver code, the source
directory for the renamed driver is the generated xxx_installation directory, where xxx is
the name of your generated driver project (see Section 11.2.2, Step 1).

© 2015 Jungo Connectivity Ltd. 83 CONFIDENTIAL

Chapter 10. Distributing Your Driver

10.4.1.1. Kernel Module Components

WinDriver uses two kernel modules: the main WinDriver driver module, which implements the
WinDriver APl — windrvr 6.0/.ko — and a driver module that implements the USB functionality
— windrvr6_usb.o/.ko.

Y our kernel driver modules cannot be distributed as-is; they must be recompiled on each
target machine, to match the kernel version on the target. Thisis due to the following
reason: The Linux kernel is continuously under development, and kernel data structures

are subject to frequent changes. To support such a dynamic development environment,

and still have kernel stability, the Linux kernel developers decided that kernel modules
must be compiled with header filesidentical to those with which the kernel itself was
compiled. They enforce this by including a version number in the kernel header files, which
is checked against the version number encoded into the kernel. Thisforces Linux driver
developers to support recompilation of their driver with the target system's kernel version.

Following isalist of the components you need to distribute to enable compilation of your kernel
driver modules on the target machine.

It is recommended that you copy the files to subdirectories in the distribution directory

that match the source subdirectories, such asredist and include, except where otherwise
specified. If you select not do so, you will need to modify the file paths in the configuration
scripts and related makefile templates, to match the location of the filesin your distribution
directory.

» From the <source_dir>/include directory, copy windrvr.h, wd_ver.h, and windrvr_usb.h —
header files required for building the kernel modules on the target.

» From the <WinDriver installation directory>/util directory (or from the generated
DriverWizard xxx_installation/redist directory), copy wdreg — a script for loading the
WinDriver kernel driver modules (see Section 9.3) — to the redist distribution directory.

» From the <source_dir>/redist directory, unless where otherwise specified, copy the following
files:.

« setup_inst_dir — ascript for installing the WinDriver driver modules, using wdr eg (see
above).

« linux_wrappers.c/.h — wrapper library source code files that bind the kernel module to the
Linux kernel.

« linux_common.h and wdusb_interface.n — header files required for building the kernel
modules on the target.

« wdusb_linux.c — source file used by WinDriver to utilize the USB stack.

© 2015 Jungo Connectivity Ltd. 84 CONFIDENTIAL

Chapter 10. Distributing Your Driver

« The compiled object code for building the WinDriver kernel driver modules —
= windrvr_gcc_v3.a— for GCC v3.x.x compilation
» windrvr_gcc v3 regparm.a— for GCC v3.x.x compilation with the regparm flag

* windrvr_gcc v2.a— for GCC v2.x.x compilation; note that this fileis not found in the
64-bit WinDriver installations, because 64-bit Linux architectures don't use GCC v2.

« Configuration scripts and makefile templates for creating makefiles for building and
installing the WinDriver kernel driver modules.

; Filesthat include .kbuild in their names use kbuild for the driver compilation.

= configure — aconfiguration script that uses the makefile.in template to create a makefile
for building and installing the WinDriver driver modules, and executes the configur e.wd
and configure.usb scripts (see below).

» configure.wd — aconfiguration script that uses the makefile.wd[.kbuild].in template to
create amakefilewd[.kbuild] makefile for building the windrvr6.0/.ko driver module.

» configure.usb — aconfiguration script that uses the makefile.usb[.kbuild].in template
to create a makefile.usb[.kbuild] makefile for building the windrvr6_ush.o/.ko driver
module.

» makefilein — atemplate for the main makefile for building and installing the WinDriver
kernel driver modules, using makefile.wd[.kbuild] and makefile.usb[.kbuild].

» makefilewd.in and makefilewd.kdbuild.in — templates for creating
makefilewd[.kbuild] makefiles for building and installing the windrvr 6.0/.ko driver
module.

» makefile.usb.in and makefile.ush.kdbuild.in — templates for creating
makefile.usb[.kbuild] makefiles for building and installing the windrvr6_usb.o/.ko
driver module.

10.4.1.2. User-Mode Hardware-Control Application or
Shared Object

Copy the user-mode hardware-control application or shared object that you created with
WinDriver, to the distribution package.

If your hardware-control application/shared object uses libwdapi1180.s0 — asisthe case
for the WinDriver samples and generated DriverWizard projects — copy thisfile from the
<source_dir>/lib directory to your distribution package.

© 2015 Jungo Connectivity Ltd. 85 CONFIDENTIAL

Chapter 10. Distributing Your Driver

If you are distributing a 32-bit application/shared object to atarget 64-bit platform [A.2] — copy
libwdapil1180 32.so from the WinDriver/lib directory to your distribution package, and rename
the copy to libwdapi1180.so.

Since your hardware-control application/shared object does not have to be matched against the
Linux kernel version number, you may distribute it as a binary object (to protect your code from
unauthorized copying). If you select to distribute your driver's source code, note that under the
license agreement with Jungo you may not distribute the source code of the libwdapi1180.s0
shared object, or the WinDriver license string used in your code.

10.4.2. Building and Installing the WinDriver Driver
Modules on the Target

From the distribution package subdirectory containing the configur e script and related build and
installation files— normally the redist subdirectory [10.4.2] — perform the following steps to
build and install the driver modules on the target:

1. Generate the required makefiles:
$./configure

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with the
--W t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full path to
the kernel source directory — e.g., /usr/src/linux.

"
1

* If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use of
kbuild on earlier versions of Linux, by executing the configuration script with the
- - enabl e- kbui | d flag.

. For afull list of the configuration script options, use the - - hel p option:
./configure --help

2. Build the WinDriver driver modules;
$ make

Thiswill create aLINUX.<kernel version>.<CPU> directory, containing the newly
compiled driver modules — windrvr6.0/.ko and windrvr6_usb.o/ .ko.

3. Install the windrvr6.0/.ko and windrvr6_usb.o/.ko driver modules.

The following command must be executed with root privileges.

make install

© 2015 Jungo Connectivity Ltd. 86 CONFIDENTIAL

Chapter 10. Distributing Your Driver

Theinstallation is performed using the setup_inst_dir script, which copies the driver
modules to the target's loadable kernel modules directory, and uses the wdr eg script [9.3] to
load the driver modules.

4. Change the user and group IDs and give read/write permissions to the devicefile
/dev/windrvr 6, depending on how you wish to allow users to access hardware
through the device. Due to security reasons, by default the devicefileis created
with permissions only for the root user. Change the permissions by modifying your
/etc/udev/per missions.d/50-udev.per missions file. For example, add the following line to
provide read and write permissions:
wi ndrvr6: root:root: 0666

) Use the wdr eg script to dynamically load the WinDriver driver modules on the target after
- each boot [9.3]. To automate this, copy wdr eg to the target machine, and add the following
line to the target's Linux boot file (for example, /etc/rc.local):
<path to wdreg> w ndrvr6

10.4.3. Installing the User-Mode Hardware-Control
Application or Shared Object

If your user-mode hardware-control application or shared object uses libwdapi1180.so0 [10.4.1.2],
copy libwdapi1180.so from the distribution package to the target's library directory:

» Jusr/lib — when distributing a 32-bit application/shared object to a 32-bit or 64-bit target
» Jusr/lib64 — when distributing a 64-bit application/shared object to a 64-bit target

If you decided to distribute the source code of the application/shared object [10.4.1.2], copy the
source code to the target as well.

@ Remember that you may not distribute the source code of the libwdapi1180.so shared
object or your WinDriver license string as part of the source code distribution [10.4.1.2].

© 2015 Jungo Connectivity Ltd. 87 CONFIDENTIAL

Chapter 11
Driver Installation — Advanced

Issues

11.1. Windows INF Files

Deviceinformation (INF) files are text files that provide information used by the Windows
Plug-and-Play mechanism to install software that supports a given hardware device. INF files
are required for hardware that identifies itself, such as USB and PCI. An INF fileincludes al
necessary information about a device and the files to be installed. When hardware manufacturers
introduce new products, they must create INF files to explicitly define the resources and files
required for each class of device.

In some cases, the INF file for your specific device is supplied by the operating system. In
other cases, you will need to create an INF file for your device. WinDriver's DriverWizard can
generate a specific INF file for your device. The INF file is used to notify the operating system
that WinDriver now handles the selected device.

For USB devices, you will not be able to access the device with WinDriver (either from
DriverWizard or from the code) without first registering the device to work with windrvr 6.sys.
Thisisdone by installing an INF file for the device. DriverWizard will offer to automatically
generate the INF file for your device.

Y ou can use DriverWizard to generate the INF file on the development machine — as explained

in Section 5.2 of the manual — and then install the INF file on any machine to which you
distribute the driver, as explained in the following sections.

11.1.1. Why Should I Create an INF File?

» To bind the WinDriver kernel module to a specific USB device.
» Tooverridethe existing driver (if any).

» To enable WinDriver applications and DriverWizard to access a USB device.

© 2015 Jungo Connectivity Ltd. 88 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

11.1.2. How Do I Install an INF File When No Driver
Exists?

Y ou must have administrative privilegesin order to install an INF file.

Y ou can use the wdreg utility with thei nst al I command to automatically install the INF file:
wdreg -inf <path to the INF file> install
(For more information, refer to Section 9.2.1 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

It isalso possible to install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis plugged
inor, if the device was already connected, when scanning for hardware changes from the
Device Manager.

» Windows Add/Remove Hardwar e Wizard: Right-click the mouse on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

* Windows Upgrade Device Driver Wizard: Locate the devicein the Device Manager devices
list and select the Update Driver ... option from the right-click mouse menu or from the Device
Manager's Action menu.

In al the manual installation methods above you will need to point Windows to the location of the
relevant INF file during the installation.

We recommend using the wdr eg utility to install the INF file automatically, instead of installing it
manually.

If theinstallation fails with an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur rent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

11.1.3. How Do | Replace an Existing Driver Using
the INF File?

Y ou must have administrative privilegesin order to replace adriver.

1. Install your INFfile.

© 2015 Jungo Connectivity Ltd. 89 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

Y ou can use the wdreg utility with thei nst al | command to automatically install the INF
file

wdreg -inf <path to INF file> install

(For more information, refer to Section 9.2.1 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

It isalso possibleto install the INF file manually, using either of the following methods:

» Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis
plugged in or, if the device was already connected, when scanning for hardware changes
from the Device Manager.

* Windows Add/Remove Hardware Wizard: Right-click on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

» Windows Upgrade Device Driver Wizard: Locate the device in the Device M anager
deviceslist and select the Update Driver ... option from the right-click mouse menu or
from the Device Manager's Action menu.

In the manual installation methods above you will need to point Windows to the location of
the relevant INF file during the installation. If the installation wizard offersto install an INF
file other than the one you have generated, select I nstall one of the other driversand choose
your specific INF file from the list.

We recommend using the wdr eg utility to install the INF file automatically, instead of
installing it manually.

If the installation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE

\ M cr osof t \ Wndows\ Curr ent Ver si on. Thisregistry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

11.2. Renaming the WinDriver Kernel Driver

The WinDriver APIs are implemented within the WinDriver kernel driver module
(windrvr6.sy<.dll/.ol.ko — depending on the OS), which provides the main driver functionality
and enables you to code your specific driver logic from the user mode [1.5].

On Windows and Linux you can change the name of the WinDriver kernel module to your
preferred driver name, and then distribute the renamed driver instead of default kernel module
— windrvr6.sys/.0/.ko. The following sections explain how to rename the driver for each of the
supported operating systems.

© 2015 Jungo Connectivity Ltd. 90 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

For information on how to use the Debug Monitor to log debug messages from your
renamed driver, refer to Section 7.2.1.1: Running wddebug_gui for a Renamed Driver.

A renamed WinDriver kernel driver can be installed on the same machine as the original
kernel module. You can also install multiple renamed WinDriver drivers on the same machine,
simultaneously.

©) Try to give your driver aunique name in order to avoid a potentia conflict with other
- driverson the target machine on which your driver will be installed.

11.2.1. Windows Driver Renaming

DriverWizard automates most of the work of renaming the Windows WinDriver kernel driver —
windrvr6.sys.

* When renaming the driver, the CPU architecture (32-/64-bit) of the devel opment
platform and its WinDriver installation, should match the target platform.

* Renaming the signed windrvr 6.sys driver nullifiesits signature. In such cases you
can select either to sign your new driver, or to distribute an unsigned driver. For more
information on driver signing and certification, refer to Section 11.3. For guidelines for
signing and certifying your renamed driver, refer to Section 11.3.2.

@ References to xxx in this section should be replaced with the name of your generated
Y Driverwizard driver project.

To rename your Windows WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Windows (refer
to Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory:

« XXX.SyS— Your new driver, which is actually arenamed copy of the windrvr6.sys
driver. Note: The properties of the generated driver file (such asthe file's version,
company name, etc.) are identical to the properties of the origina windrvr6.sys driver.
Y ou can rebuild the driver with new properties using the files from the generated
xxx_installation sys directory, as explained below.

« xxx_driver.inf — A modified version of the windrvr6.inf file, which will be used to
install your new xxx.sys driver.
Y ou can make additional modificationsto thisfile, if you wish — namely, changing the
string definitions and/or comments in thefile.

© 2015 Jungo Connectivity Ltd. 91 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

« xxx_device.inf — A modified version of the standard generated DriverWizard INF file
for your device, which registers your device with your driver (Xxx.sys).
Y ou can make additional modificationsto thisfile, if you wish, such as changing the
manufacturer or driver provider strings.

« wdapil180.dll — A copy of the WinDriver-API DLL. The DLL iscopied herein
order to simplify the driver distribution, allowing you to use the generated xxx\r edist
directory as the main installation directory for your driver, instead of the original
WinDriver\redist directory.

« wdreg.exe, wdreg_gui.exe, and difxapi.dll — Copies of the CUI and GUI versions of
the wdreg WinDriver driver installation utility, and the Driver Install Frameworks API
(DIFXAPI) DLL required by this utility [9.2.1], (respectively). These files are copied
from the WinDriver\util directory, to smplify the installation of the renamed driver.

« xxx_install.bat — Aninstallation script that executes the wdr eg commands for
installing the xxx_driver.inf and xxx_device.inf files. This script is designed to
simplify the installation of the renamed xxx_driver.sys driver, and the registration of
your device with thisdriver.

» gysdirectory: Thisdirectory contains files for advanced users, who wish to change the
properties of their driver file. Note: Changing the file's properties requires rebuilding of the
driver module using the Windows Driver Kit (WDK).

To modify the properties of your xxx.sys driver file:

1. Verify that the WDK isinstalled on your development PC, or elsewhere on its
network, and set the BASEDIR environment variable to point to the WDK installation
directory.

2. Modify the xxx.rc resources file in the generated sys directory in order to set different
driver file properties.

3. Rebuild the driver by running the following command:
ddk_rmake <0OS> <build node (free/checked)>
For example, to build arelease version of the driver for Windows XP:
ddk_make wi nxp free

* Theddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the build
command. Run ddk_nake. bat with no parametersto view the available
options for this utility.

» The selected build OS must match the CPU architecture of your WinDriver
installation. For example, you cannot select the 64-bit wi n7_x64 OSflag
when using a 32-bit WinDriver installation.

After rebuilding the xxx.sys driver, copy the new driver file to the generated
xxx_installation\redist directory.

© 2015 Jungo Connectivity Ltd. 92 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needtodois
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the WD DRI VER _NANE_CHANGE
preprocessor flag (e.g., - DAD_DRI VER_NAME_CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructionsin Section 10.2 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution. Note that you can use the generated xxx_install.bat
installation script (see Step 1) to simplify the installation.

11.2.2. Linux Driver Renaming

DriverWizard automates most of the work of renaming the Linux WinDriver kernel driver —
windrvr 6.0/ .ko.

When renaming windrvr 6.0/.ko, the windrvr6_usb.o/.ko WinDriver USB Linux GPL
driver is automatically renamed to <new driver name>_usb.o/.ko.

_ References to xxx in this section should be replaced with the name of your generated
' Driverwizard driver project.

To rename your Linux WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Linux (refer to
Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

* redist directory: Thisdirectory contains copies of the files from the original
WinDriver/redist installation directory, but with the required modifications for building
your xxx.0/.ko driver instead of windrvr6.0/.ko.

* lib and include directories. Copies of the library and include directories from the original
WinDriver distribution. These copies are created since the supported Linux WinDriver
kernel driver build method relies on the existence of these directories directly under the
same parent directory asthe redist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needto do is
replace the driver name that is passed to the function in the code with your new driver name.

© 2015 Jungo Connectivity Ltd. 93 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

3. Verify that your user-mode driver project is built with the WD DRI VER _NAME_CHANGE
preprocessor flag (- DAD_DRI VER_NAME CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructions in Section 10.4 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

As part of the installation, build your new kernel driver module(s) by following the
instructions in Section 10.4, using the files from your new installation directory.

11.3. Windows Digital Driver Signing and
Certification

11.3.1. Overview

Before distributing your driver, you may digitally sign it using Microsoft's Authenticode
mechanism, and/or certify it by submitting it to Microsoft's Windows Certification Program.
Some Windows operating systems, such as Windows XP, do not require installed drivers to be
digitally signed or certified. There are, however, advantages to getting your driver digitally signed
or fully certified, including the following:

 Driver installation on systems where installing unsigned drivers has been blocked

» Avoiding warnings during driver installation

* Full pre-installation of INF files[11.1] on Windows XP and higher

64-bit versions of Windows Vista and higher require Kernel-Mode Code Signing (KMCS) of
software that loads in kernel mode. This has the following implications for WinDriver-based

drivers:

» Driversthat areinstalled viaan INF file must be distributed together with a signed catalog file
(see detailsin Section 11.3.2).

» Driversthat are not installed using an INF file must contain an embedded driver signature.

During driver development, you can configure Windows to temporarily alow the
installation of unsigned drivers.

© 2015 Jungo Connectivity Ltd. 94 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

For more information about digital driver signing and certification, refer to the following
documentation in the Microsoft Development Network (MSDN) library:

» Driver Sgning Requirements for Windows
¢ Introduction to Code Sgning
 Digital Sgnaturesfor Kernel Modules on Windows

This white paper contains information about kernel-mode code signing, test signing, and
disabling signature enforcement during devel opment.

Some of the documentation may still use old terminology. For example, references to
the Windows Logo Program (WLP) or to the Windows Hardware Quality Labs (WHQL)
should be replaced with the Windows Certification Program, and references to the
Windows Quality Online Services (Winqual) should be replaced with the Windows Dev
Center Hardware Dashboard Services (the Hardware Dashboard).

11.3.1.1. Authenticode Driver Signhature

The Microsoft Authenticode mechanism verifies the authenticity of adriver's provider. It alows
driver developers to include information about themselves and their code with their programs
through the use of digital signatures, and informs users of the driver that the driver's publisher is
participating in an infrastructure of trusted entities.

The Authenticode signature does not, however, guarantee the code's safety or functionality.

The WinDriver\redist\windrvr 6.sys driver has an Authenticode digital signature.

11.3.1.2. Windows Certification Program

Microsoft's Windows Certification Program (previously known as the Windows Logo Program
(WLP)), lays out procedures for submitting hardware and software modules, including drivers, for
Microsoft quality assurance tests. Passing the tests qualifies the hardware/software for Microsoft
certification, which verifies both the driver provider's authenticity and the driver's safety and
functionality.

To digitally sign and certify a device driver, a Windows Hardware Certification Kit (HCK)
package, which includes the driver and the related hardware, should be submitted to the Windows
Certification Program for testing, using the Windows Dev Center Hardware Dashboard Services
(the Har dwar e Dashboar d).

; Jungo's professional services unit provides a complete Windows driver pre-certification
U service for Jungo-based drivers. Professional engineers efficiently perform all the tests
required by the Windows Certification Program, relieving customers of the expense and
stress of in-house testing. Jungo prepares an HCK submission package containing the test
results, and delivers the package to the customer, ready for submission to Microsoft.
For more information, refer to
http://www.jungo.com/st/products/windriver/windriver_whql_certification/.

© 2015 Jungo Connectivity Ltd. 95 CONFIDENTIAL

http://www.jungo.com/st/products/windriver/windriver_whql_certification/

Chapter 11. Driver Installation — Advanced Issues

For detailed information regarding Microsoft's Windows Certification Program and the
certification process, refer to the MSDN Windows Hardwar e Certification page — http://
msdn. microsoft.com/library/windows/hardware/gg463010.aspx — and to the documentation
referenced from that page, including the MSDN Windows Dev Center — Hardware Dashboard
Services page — http://msdn.microsoft.com/library/windows/hardware/gg463091.

11.3.2. Driver Signing and Certification of
WinDriver-Based Drivers

Asindicated above [11.3.1.1], The WinDriver\redist\windrvr 6.sys driver has an Authenticode
signature. Since WinDriver's kernel module (windrvr6.sys) is ageneric driver, which can be used
asadriver for different types of hardware devices, it cannot be submitted to Microsoft's Windows
Certification Program as a standalone driver. However, once you have used WinDriver to develop
aWindows driver for your selected hardware, you can submit both the hardware and driver for
Microsoft certification, as explained below.

The driver certification and signature procedures — either via Authenticode or the Windows
Certification Program — require the creation of a catalog file for the driver. Thisfileisasort of
hash, which describes other files. The signed windrvr 6.sys driver is provided with a matching
catalog file— WinDriver\redist\wd1180.cat. Thisfileis assigned to the Cat al ogFi | e entry
in the windrvr6.inf file (provided as well in the redist directory). Thisentry isused to inform
Windows of the driver's signature and the relevant catal og file during the driver's installation.

When the name, contents, or even the date of the files described in adriver's catalog fileis
modified, the catalog file, and consequently the driver signature associated with it, become
invalid. Therefore, if you select to rename the windrvr 6.sys driver [11.2] and/or the related
windrvr6.inf file, the wd1180.cat catalog file and the related driver signature will become
invalid.

In addition, when using WinDriver to develop adriver for your Plug-and-Play device, you
normally also create a device-specific INF file that registers your device to work with the
windrvr6.sys driver module (or arenamed version of thisdriver). Since this INF file is created
at your site, for your specific hardware, it is not referenced from the wd1180.cat catalog file and
cannot be signed by Jungo a priori.

When renaming windrvr 6.sys and/or creating a device-specific INF file for your device, you
have two alternative options regarding your driver's digital signing:

» Do not digitally sign your driver. If you select this option, remove or comment-out the
reference to the wd1180.cat file from the windrvr6.inf file (or your renamed version of this
file).

* Submit your driver to the Windows Certification Program, or have it Authenticode signed.
Note that while renaming WinDriver\redist\windrvr 6.sys nullifies the driver's digita
signature, the driver is still compliant with the certification requirements of the Windows
Certification Program.

© 2015 Jungo Connectivity Ltd. 96 CONFIDENTIAL

http://msdn.microsoft.com/library/windows/hardware/gg463010.aspx
http://msdn.microsoft.com/library/windows/hardware/gg463010.aspx
http://msdn.microsoft.com/library/windows/hardware/gg463091

Chapter 11. Driver Installation — Advanced Issues

To digitally sign/certify your driver, follow these steps:

« Create anew catalog file for your driver, as explained in the Windows Certification Program
documentation. The new file should reference both windrvr 6.sys (or your renamed driver)
and any INF files used in your driver's installation.

« Assign the name of your new catalog file to the Cat al ogFi | e entry in your driver's
INF file(s). (You can either change the Cat al ogFi | e entry inthewindrvr6.inf fileto
refer to your new catalog file, and add a similar entry in your device-specific INF file; or
incorporate both windrvr 6.inf and your device INF file into asingle INF file that contains
such aCat al ogFi | e entry).

= Submit your driver to Microsoft's Windows Certification Program or for an Authenticode
signature. If you wish to submit your driver to the Windows Certification Program, refer to
the additional guidelinesin Section 11.3.2.1.

Note that many WinDriver customers have already successfully digitally signed and certified
their WinDriver-based drivers.

11.3.2.1. HCK Test Notes

Asindicated in Microsoft's documentation, before submitting the driver for testing and
certification you need to download the Windows Hardware Certification Kit (HCK), and run
the relevant tests for your hardware/software. After you have verified that you can successfully
pass the HCK tests, create the required logs package and proceed according to Microsoft's
documentation. For more information, refer to the MSDN Windows Hardware Certification Kit
(HCK) page — http://msdn.microsoft.com/library/windows/hardware/hh833788.

When running the HCK tests, note the following:

» TheDriver Verifier test is applied to all unsigned drivers found on the test machine. It is
therefore important to try and minimize the number of unsigned driversinstalled on the test
machine (apart from the test driver — windrvr 6.sys).

» The USB Selective Suspend test requires that the depth of the under-test USB device in the
USB devicestreeis at least one external hub and no more than two external hubs deep.

» The ACPI Stresstest requires that the ACPI settings in the BIOS support the S3 power state.
» Before submitting the file for certification you need to create a new catalog file, which lists

your driver and specific INF file(s), and refer to this catalog file from your INF file(s), as
explained above [11.3.2].

© 2015 Jungo Connectivity Ltd. 97 CONFIDENTIAL

http://msdn.microsoft.com/library/windows/hardware/hh833788

Chapter 11. Driver Installation — Advanced Issues

11.4. Windows XP Embedded WinDriver
Component

When creating a Windows X P Embedded image using the Target Designer tool from Microsoft's
Windows Embedded Studio, you can select the components that you wish to add to your image.
The added components will be installed automatically during the first boot on the Windows XP
Embedded target on which the image is loaded.

To automatically install the required WinDriver files— such as the windrvr 6.inf file and the
WinDriver kernel driver that it installs (windrvr 6.sys), your device INF file,, and the WinDriver-
API DLL (wdapi1180.dll) — on Windows X P Embedded platforms, you can create arelevant
WinDriver component and add it to your Windows XP Embedded image.

WinDriver ssimplifies this task for you by providing you with a ready-made component:
WinDriver\redist\xp_embedded\wd_component\windriver.sd.

To use the provided component, follow the steps below.

The provided windriver.sld component relies on the existence of awd_files directory
in the same directory that holds the component. Therefore, do not rename the provided
WinDriver\redist\xp_embedded\wd_component\wd_files directory or modify its
contents, unless instructed to so in the following guidelines.

1. Modify the dev.inf file:
Thewindriver.sld component depends on the existence of adev.inf filein thewd_files
directory. The WinDriver installation on your development Windows platform contains a
generic WinDriver\redist\xp_embedded\wd_component\wd_files\dev.inf file. Use either
of the following methods to modify thisfile to suit your device:

* Modify the generic dev.inf file to describe your device. At the very least, you must modify
thetemplate[Devi celLi st] entry and insert your device's hardware type and vendor
and product IDs. For example, for adevice with vendor ID 0x1234 and product ID

0x5678:
"ny_dev_usb"=Install, USB\VID 1234\ &PI D 5678

OR:

» Create an INF file for your device using DriverWizard (refer to Section 5.2,
Step 3) and name it dev.inf. Then copy your dev.inf device INF file to the
WinDriver\redist\xp_embedded\wd _component\wd_files directory.

2. Add the WinDriver component to the Windows Embedded Component Database:
1. Open the Windows Embedded Component Database Manager (DBMgr).
2. Click Import.

3. Select the WinDriver component —
WinDriver\redist\xp_embedded\wd_component\windriver.sd — asthe SLD file and

click Import.

© 2015 Jungo Connectivity Ltd. 98 CONFIDENTIAL

Chapter 11. Driver Installation — Advanced Issues

3. Add the WinDriver component to your Windows XP Embedded image:
1. Open your project in the Target Designer.

2. Double-click the WinDriver component to add it to your project.
Note: If you aready have an earlier version of the WinDriver component in your
project's components list, right-click this component and select Upgrade.

3. Run adependency check and build your image.

After following these steps, WinDriver will automatically be installed during the first boot on the
target Windows X P Embedded platform on which your image is loaded.

If you have selected to rename the WinDriver kernel module [11.2], you will not be able
to use the provided windriver.sld component. Y ou can build your own component for the
renamed driver, or use the wdreg utility to install the driver on the target Windows XP
Embedded platform, as explained in the manual.

© 2015 Jungo Connectivity Ltd. 99 CONFIDENTIAL

Appendix A
64-Bit Operating Systems
Support

A.l. Supported 64-Bit Architectures

WinDriver supports the following 64-hit platforms:

* Linux AMD®64 or Intel EM64T (x86_64) or 64-bit PowerPC (ppc64).
For afull list of the Linux platforms supported by WinDriver, refer to Section 4.1.3.

* Windows AMD®64 or Intel EM64T (x64).
For afull list of the Windows platforms supported by WinDriver, refer to Section 4.1.1.

The project or makefile for a 64-bit driver project must include the KERNEL_64BI T
preprocessor definition. In the makefiles, the definition is added using the - D flag:

- DKERNEL_64BI T.

The sample and wizard-generated Linux and Windows GCC makefiles and the Windows
MS Visua Studio projects, in the 64-bit WinDriver toolkit, already include this definition.

A.2. Support for 32-Bit Applications on 64-Bit
Windows and Linux Platforms

By default, applications created using the 64-bit versions of WinDriver are 64-bit applications.
Such applications are more efficient than 32-bit applications. However, you can also use the
64-bit WinDriver versions to create 32-bit applications that will run on the supported Windows
and Linux 64-bit platforms[A.1].

In the following documentation, <WD64> signifies the path to a 64-bit WinDriver
installation directory for your target operating system, and <WD32> signifies the path to a
32-bit WinDriver installation directory for the same operating system.

To create a 32-bit application for 64-bit Windows or Linux platforms, using the 64-bit version of
WinDriver, do the following:

1. Create aWinDriver application, as outlined in this manual (e.g., by generating code with
DriverWizard, or using one of the WinDriver samples).

2. Build the application with an appropriate 32-bit compiler for your target OS, using the
following configuration:

© 2015 Jungo Connectivity Ltd. 100 CONFIDENTIAL

Appendix A. 64-Bit Operating Systems Support

* Add aKERNEL_64BI T preprocessor definition to your project or makefile.

In the makefiles, the definition is added using the - Dflag: - DKERNEL_64BI T.

The sample and wizard-generated Linux and Windows GCC makefiles and the Windows
MS Visua Studio projects, in the 64-bit WinDriver toolkit, already include this definition.

 Link the application with the specific version of the WinDriver-API library/
shared object for 32-bit applications executed on 64-bit platforms —
<WD64>\lib\amd64\x86\wdapi1180.lib on Windows / <WD64>/lib/libwdapi1180_32.s0
on Linux.

The sample and wizard-generated project and make files for 32-bit applicationsin the
64-bit WinDriver toolkit already link to the correct library:

On Windows, the MS Visual Studio project files and Windows GCC makefiles are defined
to link with <WD64>\lib\amd64\x86\wdapi1180.lib.

On Linux, the installation of the 64-bit WinDriver toolkit on the development machine
creates alibwdapi1180.s0 symbolic link in the /usr/lib directory — which links to
<WD64>/lib/libwdapil180 32.so — and in the /usr/lib64 directory — which linksto
<WD64>/lib/libwdapi1180.s0 (the 64-bit version of this shared object).

The sample and wizard-generated WinDriver makefiles rely on these symbolic linksto
link with the appropriate shared object, depending on whether the code is compiled using a
32-hit or 64-bit compiler.

» When distributing your application to target 64-bit platforms, you need to provide
with it the WinDriver-API DLL/shared object for 32-bit applications executed
on 64-bit platforms — <WD64>\r edist\wdapi1180_32.dll on Windows/
<WD64>/lib/libwdapi1180_32.so on Linux. Before distributing thisfile, rename
the copy of thefilein your distribution package by removing the 32 portion. The
installation on the target should copy the renamed DL L/shared object to the relevant
OS directory — \% windir % \sysW OW64 on Windows or /usr/lib on Linux. All other
distribution files are the same as for any other 64-bit WinDriver driver distribution, as
detailed in Chapter 10.

"
1

» An application created using the method described in this section will not work on 32-bit
platforms. A WinDriver application for 32-bit platforms needs to be compiled without
the KERNEL _64BI T definition; it needs to be linked with the standard 32-bit version
of the WinDriver-API library/shared object from the 32-bit WinDriver installation
(<WD32>\lib\x86\wdapi1180.lib on Windows / <WD32>/lib/libwdapi1180.s0 on
Linux); and it should be distributed with the standard 32-bit WinDriver-API DLL/shared
object (<WD32>\r edist\wdapi1180.dIl on Windows/ <WD32>/lib/libwdapi1180.s0 on
Linux) and any other required 32-bit distribution file, as outlined in Chapter 10.

© 2015 Jungo Connectivity Ltd. 101 CONFIDENTIAL

Appendix A. 64-Bit Operating Systems Support

A.3. 64-Bit and 32-Bit Data Types

In general, DWORD is unsigned long. While any 32-bit compiler treats this type as 32 bits wide,
64-bit compilerstreat this type differently. With Windows 64-bit compilers the size of thistype
isstill 32 bits. However, with UNIX 64-bit compilers (e.g., GCC) the size of thistype is 64 bits.
In order to avoid compiler dependency issues, use the UINT32 and UINT64 cross-platform types
when you want to refer to a 32-bit or 64-bit address, respectively.

© 2015 Jungo Connectivity Ltd. 102 CONFIDENTIAL

Appendix B
WinDriver USB Host API
Reference

This function referenceis C oriented. The WinDriver C# and Visual Basic .NET APls
have been implemented as closely as possible to the C APIs, therefore .NET programmers
can also use this reference to better understand the WinDriver APIs for their selected
development language. For the exact APl implementation and usage examples for your
selected language, refer to the WinDriver .NET source code.

B.1. WD_DriverName

Purpose
Sets the name of the WinDriver kernel module, which will be used by the calling application.
» The default driver name, which isused if the function is not called, iswindrvr6.

» Thisfunction must be called once, and only once, from the beginning of your application,
before calling any other WinDriver function (including WD_Qpen() / WDU_I ni t ()), as
demonstrated in the sample and generated DriverWizard WinDriver applications, which
include a call to this function with the default driver name — windrvr6.

* On Windows and Linux, if you select to modify the name of the WinDriver kernel module
(windrvr6.sys/.o/.ko), as explained in Section 11.2, you must ensure that your application calls
WD _Dri ver Name() with your new driver name.

* Inorder tousethe WD _Dr i ver Name() function, your user-mode driver project must be built
with WD_DRI VER_NAME_CHANCGE preprocessor flag (e.g.: - DWD_DRI VER_NAME_CHANGE
— for MSVisua Studio, Windows GCC, and GCC).

The sample and generated DriverWizard Windows and Linux WinDriver projects/makefiles
already set this preprocessor flag.

Prototype

const char* DLLCALLCONV WD Driver Name(const char* sNane);

Parameters
Name Type I nput/Output
sName const char* Input

© 2015 Jungo Connectivity Ltd. 103 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description
Name Description
sName The name of the WinDriver kernel module to be used by the

application.

NOTE: The driver name should be indicated without the driver
file's extension. For example, use windrvr 6, not windrvr 6.sys or
windrvr6.0.

Return Value

Returns the selected driver name on success; returns NULL on failure (e.g., if the functionis
called twice from the same application)long.

Remarks

The ability to rename the WinDriver kernel module is supported on Windows and Linux, as
explained in Section 11.2.

On Windows CE, always call theWD_Dr i ver Nanme() function with the default WinDriver
kernel module name — windrvr6 — or refrain from calling the function atogether.

B.2. WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver's USB Library (WDU), including
* Anoutline of the WDU_xxx API calling sequence — see Section B.2.1.

* |Instructions for upgrading code devel oped with the previous WinDriver USB API, used in
version 5.22 and earlier, to use the improved WDU_xxx APl — see Section B.2.2.
If you do not need to upgrade USB driver code developed with an older version of WinDriver,
simply skip this section.

The WDU library'sinterfaceis found in the WinDriver/include/wdu_lib.h and WinDriver/
include/windrvr.h header files, which should be included from any source file that calls the
WDU API. (wdu_lib.h already includes windrvr.h).

B.2.1. Calling Sequence for WinDriver USB

The WinDriver WDU_xxx USB API is designed to support event-driven transfers between your
user-mode USB application and USB devices. Thisisin contrast to earlier versions, in which
USB devices were initialized and controlled using a specific sequence of function calls.

Y ou can implement the three user callback functions specified in the next section:
WDU_ATTACH_CALLBACK [B.3.1], WbU_DETACH_CALLBACK [B.3.2] and
WDU_POWNER _CHANGE_CALLBACK [B.3.3] (at the very least WDU_ATTACH_CALLBACK).

© 2015 Jungo Connectivity Ltd. 104 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

These functions are used to notify your application when arelevant system event occurs, such as
the attaching or detaching of a USB device. For best performance, minimal processing should be
donein these functions.

Y our application calls\VWDU | ni t () [B.4.1] and provides the criteria according to which the
system identifies adevice asrelevant or irrelevant. The WDU I ni t () function must also pass
pointers to the user callback functions.

Y our application then simply waits to receive a notification of an event. Upon receipt of such a
notification, processing continues. Y our application may make use of any functions defined in the
high- or low-level APIsbelow. The high-level functions, provided for your convenience, make
use of the low-level functions, which in turn use IOCTLSs to enable communication between the
WinDriver kernel module and your user-mode application.

When exiting, your application calls WDU_Uni ni t () [B.4.7] to stop listening to devices
matching the given criteria and to unregister the notification callbacks for these devices.

The following figure depicts the calling sequence described above. Each vertical line represents a
function or process. Each horizontal arrow represents asignal or request, drawn from the initiator
to the recipient. Time progresses from top to bottom.

© 2015 Jungo Connectivity Ltd. 105 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

FigureB.1. WinDriver USB Calling Sequence

time rraingy attachi) detach() WyinDriver

WOLL Init()
Motify the user of currently attached devices
Signal Attach
_______________ attachl]
- USB Device
Aftach
Motify the user of the attgch of the new device
Signal Attach
_______________ atacl0 ”___]
WOl Setinterface) 2
WU Transer() ?
[mainf) may initiate ather requests to WirDriver] 2
 LUSE Device
Detach
Motify the user of the
detached device
Signal Detach
device_detach()
WOL Uninit()
h J

TIf the WD _ACKNOWLEDGE flag was set in the call to WDU_Init(), the attach()
callback should return TRUE to accept control of the device or FALSE othenwise.

2 Only possikble if the attach() callback returned TRUE.

The following piece of meta-code can serve as a framework for your user-mode application's
code:

© 2015 Jungo Connectivity Ltd. 106 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

attach()
{

if this is ny device
/*
Set the desired alternate setting
Si gnal main() about the attachnent of this device
*/

return TRUE
el se
return FALSE

}
det ach()
{
signal main() about the detachment of this device
}
mai n()
{
WU Ilnit(...);
while (...)
{
/* wait for new devices */
/* issue transfers */
}
WDU_Uni nit();
}

B.2.2. Upgrading from the WD_xxx USB API to the
WDU_xxx API

The WinDriver WDU_xxx USB API, provided beginning with version 6.00, is designed to
support event-driven transfers between your user-mode USB application and USB devices. This
isin contrast to earlier versions, in which USB devices were initialized and controlled using a
specific sequence of function calls.

Asaresult of this change, you will need to modify your USB applications that were designed to
interface with earlier versions of WinDriver to ensure that they will work with WinDriver v6.X on
all supported platforms and not only on Microsoft Windows.

Y ou will have to reorganize your application's code so that it conforms with the framework
illustrated by the piece of meta-code provided in Section B.2.1.

© 2015 Jungo Connectivity Ltd. 107 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

In addition, the functions that collectively define the USB API have been changed. The new
functions, described in the next few sections, provide an improved interface between user-mode
USB applications and the WinDriver kernel module. Note that the new functions receive their
parameters directly, unlike the old functions, which received their parameters using a structure.

The table below lists the legacy functions in the left column and indicates in the right column
which function or functions replace(s) each of the legacy functions. Use thistable to quickly
determine which new functions to use in your new code.

WD UsbScanDevi ce()

Problem Solution

High Level API

Previous Function New Function

WD Open() WDU | nit()[B.4.1]
WD Ver si on()

WD _UsbDevi ceRegi st er ()

WDU_Set | nt er face() [B.4.2]

WD UsbGet Confi gurati on()

WDU_Get Devi cel nf o() [B.4.5]

WD _UsbDevi ceUnr egi ster ()

VDU_Uni ni t () [B.4.7]

Low Level API

Previous Function

New Function

WD _UsbTr ansf er ()

WDU_Tr ansf er () [B.4.8.1]

WDU_Tr ansf er Def aul t Pi pe() [B.4.8.3]
WDU_Tr ansf er Bul k() [B.4.8.4]

WDU_Tr ansferl soch() [B.4.8.5]
WDU_Tr ansferlnterrupt () [B.4.8.6]

USB_TRANSFER _HALT option

WDU Hal t Tr ansfer () [B.4.8.2]

WD UsbReset Pi pe()

WDU_ Reset Pi pe() [B.4.10]

WD UsbReset Devi ce()
WD UsbReset Devi ceEx()

WDU Reset Devi ce() [B.4.11]

© 2015 Jungo Connectivity Ltd.

108

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.3. USB User Callback Functions

B.3.1. WDU_ATTACH_CALLBACK

Purpose

WinDriver calls this function when a new device, matching the given criteria, is attached,
provided it is not yet controlled by another driver.
This callback is called once for each matching interface.

Prototype

typedef BOOL (DLLCALLCONV *WDU ATTACH CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE *pDevi cel nf o,
PVO D pUser Dat a) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pDevicelnfo WDU_DEVICE* Input
pUserData PVOID I nput
Description
Name Description
hDevice A unique identifier for the device/interface
pDevicelnfo Pointer to a USB device information structure [B.5.2.3]; Valid until the
end of the function
pUserData Pointer to user-mode data for the callback, as passed to
VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

If the WD_ ACKNOWLEDGE flag was set in the call to WDU_| ni t () [B.4.1] (within the

dwOpt i ons parameter), the callback function should check if it wantsto control the device, and
if so return TRUE (otherwise — return FALSE).

If the WD_ ACKNOWLEDGE flag was not set in the call to WDU _I ni t (), then the return value of
the callback function isinsignificant.

© 2015 Jungo Connectivity Ltd. 109 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.3.2. WDU_DETACH_CALLBACK

Purpose

WinDriver calls this function when a controlled device has been detached from the system.

Prototype

typedef void (DLLCALLCONV *WDU DETACH CALLBACK) (

WDU_DEVI CE_HANDLE hDevi ce,

PVO D pUser Dat a) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pUserData PVOID I nput
Description
Name Description
hDevice A unique identifier for the device/interface
pUserData Pointer to user-mode data for the callback, as passed to

VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

None

© 2015 Jungo Connectivity Ltd.

110

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.3.3. WDU_POWER_CHANGE_CALLBACK

Purpose

WinDriver calls this function when a controlled device has changed its power settings.

Prototype

typedef BOOL (DLLCALLCONV *WDU POMER CHANGE CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPower St at e,
PVO D pUser Dat a) ;

Parameters
Name Type I nput/Output
dwPowerState DWORD Input
pUserData PVOID I nput
Description
Name Description
hDevice A unique identifier for the device/interface
dwPowerState Number of the power state selected
pUserData Pointer to user-mode data for the callback, as passed to
VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

TRUE/ FALSE. Currently thereis no significance to the return value.

Remarks

This callback is supported only on Windows.

B.4. USB Functions

The functions described in this section are declared in the
WinDriver/include/wdu_lib.h header file.

© 2015 Jungo Connectivity Ltd. 111 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.1. WDU _Init

Purpose

Starts listening to devices matching input criteria and registers notification callbacks for these
devices.

Prototype

DWORD VDU _| ni t (
WDU_DRI VER_HANDLE *phDri ver,
WDU_MATCH _TABLE *pMat chTabl es,
DWORD dwihNunivat chTabl es,
WDU_EVENT_TABLE *pEvent Tabl e,
const char *sLicense,
DWORD dwOpt i ons) ;

Parameters

Name Type I nput/Output

phDriver WDU_DRIVER_HANDLE * Output

pMatchTables WDU_MATCH_TABLE* Input

dwNumMatchTables | DWORD Input

pEventTable WDU_EVENT_TABLE* Input

sLicense const char* Input

dwOptions DWORD Input

Description

Name Description

phDriver Handle to the registration of events & criteria

pMatchTables Array of match tables [B.5.2.1] defining the devices criteria

dwNumMatchTables | Number of elementsin pMatchTables

pEventTable Pointer to an event table structure [B.5.2.2], which holds the
addresses of the user-mode device status change notification callback
functions [B.3] and the data to pass to the callbacks

sLicense WinDriver's license string

dwOptions Canbezeroor:
* WD ACKNOWLEDGE — the user can seize control over the device
when returning valuein WDU_ATTACH CALLBACK[B.3.1]

© 2015 Jungo Connectivity Ltd. 112 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.2. WDU_SetInterface

Purpose

Sets the alternate setting for the specified interface.

Prototype

DWORD WDU_Set | nt er f ace(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwi nt er f aceNum
DWORD dwAl t er nat eSetti ng);

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwlnterfaceNum DWORD Input
dwA IternateSetting DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface

dwlnterfaceNum

The interface's number

dwA IternateSetting

The desired alternate setting value

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

113

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Remarks

On Windows CE — as opposed to Windows — VWDU_Set | nt er f ace() attempts to open all
the pipes of the specified alternate setting, even if not all pipes are currently required. The reason
for thisisthat Windows CE limits the total number of pipes that can be opened simultaneously on
adevice, to 16 (see http://msdn.microsoft.com/en-ug/library/ms919318.aspx). By opening all the
pipes, the driver ensures that the pipes will be available for use, when needed.

The pipes are opened using the Windows CE USB host controller driver's LPOPEN_PI PE
callback. On some Windows CE devices, the call to this callback fails, causing

WDU_Set | nt er f ace() to fail aswell. To resolve such problems, upgrade the device's USB
host controller driver.

B.4.3. WDU_GetDeviceAddr

Purpose

Gets the USB address for a given device.

Prototype

DWORD WDU_Cet Devi ceAddr (
WDU_DEVI CE_HANDLE hDevi ce,
ULONG *pAddr ess);

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pAddress ULONG Output
Description
Name Description
hDevice A unique identifier for a device/interface
pAddress A pointer to the address number returned by the function

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

This function is supported only on Windows.

© 2015 Jungo Connectivity Ltd. 114 CONFIDENTIAL

http://msdn.microsoft.com/en-us/library/ms919318.aspx

Appendix B. WinDriver USB Host API Reference

B.4.4. WDU_GetDeviceRegistryProperty

Purpose

Gets the specified registry property of agiven USB device.

Prototype

DWORD DLLCALLCONV WDU_Get Devi ceRegi stryPropert y(
WDU_DEVI CE_HANDLE hDevi ce,
PVO D pBuf fer,
PDWORD pdwSi ze,
WD _DEVI CE_REAQ STRY_PROPERTY property);

Parameters

Name Type I nput/Output

hDevice WDU_DEVICE_HANDLE Input

pBuffer PVOID Output

pdwSize PDWORD | nput/Output

property WD_DEVICE_REGISTRY_PROPERTY Input

Description

Name Description

hDevice A unique identifier of the device/interface

pBuffer Pointer to a user allocated buffer to be filled with the requested registry
property. The function will fill the buffer only if the buffer size, as
indicated in the input value of the pdwSi ze parameter, is sufficient —
i.e., >=the property's size, asreturned viapdwSi ze.
pBuf f er can be set to NULL when using the function only to retrieve
the size of the registry property (see pdwSi ze).

pdwSize Asinput, pointsto avalue indicating the size of the user-supplied
buffer (pBuf f er); if pBuf f er issetto NULL, theinput value of this
parameter isignored.
As output, points to a value indicating the required buffer size for
storing the registry property.

property The ID of the registry property to be retrieved — see the description of
the WD _DEVI CE_REGQ STRY_PROPERTY enumeration [B.5.1].
Note: String registry properties arein WCHAR format.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 115 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Remarks

* When the size of the provided user buffer (pBuf f er) — * pdwSi ze (input)
— isnot sufficient to hold the requested registry property, the function returns
WD | NVALI D_PARAVETER.

» Thisfunction is supported only on Windows.

B.4.5. WDU_GetDevicelnfo

Purpose
Gets configuration information from a device, including all the device descriptors.

NOTE: The caller to thisfunction is responsible for calling WDU_Put Devi cel nf o() [B.4.6] in
order to freethe * ppDevi cel nf o pointer returned by the function.

Prototype

DWORD WDU_Get Devi cel nf o(
WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE **ppDevi cel nfo);

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
ppDevicelnfo WDU_DEVICE** Output
Description
Name Description
hDevice A unigue identifier for a device/interface
ppDevicelnfo Pointer to pointer to a USB device information structure [B.5.2.3]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 116 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.6. WDU_PutDevicelnfo

Purpose

Receives a device information pointer, allocated with a previous

WDU_Get Devi cel nf o() [B.4.5] cdl, in order to perform the necessary cleanup.

Prototype

voi d WDU_Put Devi cel nf o(WDU_DEVI CE *pDevi cel nfo);

Parameters
Name Type I nput/Output
pDevicelnfo WDU_DEVICE* Input
Description
Name Description
pDevicelnfo Pointer to a USB device information structure [B.5.2.3], as returned by
apreviouscall to WDU_Get Devi cel nf o() [B.4.5]

Return Value

None

© 2015 Jungo Connectivity Ltd.

117

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.7. WDU_Uninit

Purpose

Stops listening to devices matching a given criteria and unregisters the notification callbacks for

these devices.

Prototype

voi d WDU_Uni ni t (WDU_DRI VER_HANDLE hDri ver);

Parameters

Name Type I nput/Output
hDriver WDU_DRIVER_HANDLE I nput
Description

Name Description

hDriver Handle to the registration received from WDU_| ni t () [B.4.1]

Return Value

None

© 2015 Jungo Connectivity Ltd.

118

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.8. Single-Blocking Transfer Functions

This section describes WinDriver's single-blocking data transfer functions.
For more information, refer to Section 8.3.2 of the manual.

B.4.8.1. WDU_Transfer

Purpose

Transfers data to or from adevice.

Prototype

DWORD WDU_Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,
DWORD dwOpt i ons,
PVO D pBuffer,
DWORD dwBuf fer Si ze,
PDWORD pdwByt esTr ansferred,
PBYTE pSet upPacket ,
DWORD dwTi neout) ;

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwPipeNum DWORD Input
fRead DWORD Input
dwOptions DWORD Input
pBuffer PVOID Input
dwBufferSize DWORD Input
pdwBytesTransferred | PDWORD Output
pSetupPacket PBYTE Input
dwTimeout DWORD Input

© 2015 Jungo Connectivity Ltd. 119 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description

Name Description

hDevice A unigue identifier for the device/interface received from
WDU I nit()[B.4.1]

dwPipeNum The number of the pipe through which the datais transferred

fRead TRUE for read, FALSE for write

dwOptions A bit-mask of USB transfer options, which can consist of a
combination of any of the following flags:

* USB_| SOCH_NOASAP — Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.

It is recommended that you use this flag for isochronous write

(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.

Thisflag isavailable only for Windows.

* USB | SOCH FULL_PACKETS ONLY — Preventstransfers of less
than the packet size on isochronous pipes.

« USB_BULK | NT_URB_SI ZE_OVERRI DE_128K — Limitsthe
size of the USB Request Block (URB) to 128K B.

Thisflag isavailable only for Windows.

* USB_| SOCH_RESET — Resets the isochronous pipe before the
datatransfer. It also resets the pipe after minor errors, consequently
allowing to transfer to continue.

pBuffer Address of the data buffer

dwBufferSize Number of bytesto transfer. The buffer sizeisnot limited to the
device's maximum packet size; therefore, you can use larger buffers

by setting the buffer size to a multiple of the maximum packet size.
Use large buffers to reduce the number of context switches and thereby
improve performance.

pawBytesTransferred | Number of bytes actually transferred

pSetupPacket An 8-byte packet to transfer to control pipes

dwTimeout Maximum time, in milliseconds (ms), to complete a transfer.
A value of zero indicates no timeout (infinite wait).

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

Remarks

The resolution of the timeout (the dwTi meout parameter) is according to the operating system
scheduler'stime slot. For example, in Windows the timeout's resolution is 10 milliseconds (ms).

© 2015 Jungo Connectivity Ltd. 120 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.8.2. WDU_HaltTransfer

Purpose

Halts the transfer on the specified pipe (only one simultaneous transfer per pipeis alowed by
WinDriver).

Prototype

DWORD WDU_Hal t Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwPipeNum DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 121 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.8.3. WDU_TransferDefaultPipe

Purpose

Transfers data to or from a device through the default control pipe (pipe 0).

Prototype

DWORD WDU_Tr ansf er Def aul t Pi pe(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD f Read,

DWORD dwOpt i ons,

PVO D pBuf fer,

DWORD dwBuUf f er Si ze,

PDWORD pdwByt esTr ansferred,
PBYTE pSet upPacket,

DWORD dwTi meout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
@ 4wpi peNum(N/A).
Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.8.4. WDU_TransferBulk

Purpose

Performs bulk data transfer to or from a device.

Prototype

DWORD WDU_Tr ansf er Bul k(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVO D pBuf fer,

DWORD dwBuUf f er Si ze,

PDWORD pdwByt esTr ansferred,
DWORD dwTi meout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
U pSet upPacket (N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 122 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.8.5. WDU_Transferlsoch

Purpose

Performs isochronous data transfer to or from a device.

Prototype

DWORD WDU_Tr ansf er | soch(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVO D pBuf fer,

DWORD dwBuUf f er Si ze,

PDWORD pdwByt esTr ansferred,
DWORD dwTi meout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
d pSet upPacket (N/A).
Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.8.6. WDU_TransferInterrupt

Purpose

Performsinterrupt data transfer to or from a device.

Prototype

DWORD WDU_Tr ansferl nt errupt (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVO D pBuf fer,

DWORD dwBuUf f er Si ze,

PDWORD pdwByt esTr ansferred,
DWORD dwTi meout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
U pSet upPacket (N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 123 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.9. Streaming Data Transfer Functions

This section describes WinDriver's streaming data transfer functions.

For a detailed explanation regarding stream transfers and their implementation with Windriver,
refer to Section 8.3.3 of the manual.

| a The streaming APIs are currently supported on Windows and Windows CE.

B.4.9.1. WDU_StreamOpen

Purpose

Opens a new stream for the specified pipe.
A stream can be associated with any pipe except for the control pipe (pipe 0). The stream's data

transfer direction — read/write — is derived from the direction of its pipe.

Prototype

DWORD DLLCALLCONV WDU_St r eamOpen(
WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum

DWORD dwBuf ferSi ze,

DWORD dwRxSi ze,
BOOL f Bl ocki ng,
DWORD dwOpt i ons,

DWORD dwRxTxTi neout ,
WDU_STREAM HANDLE *phSt r ean) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwPipeNum DWORD Input
dwBufferSize DWORD Input
dwRxSize DWORD Input
fBlocking BOOL Input
dwOptions DWORD Input
dwRxTxTimeout DWORD Input
phStream WDU_STREAM_HANDLE* Output

© 2015 Jungo Connectivity Ltd.

124

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe for which to open the stream
dwBufferSize The size, in bytes, of the stream's data buffer
dwRxSize The size, in bytes, of the data blocks that the stream reads from the
device. This parameter is relevant only for read streams, and must
not exceed the value of the dwBuf f er Si ze parameter. Note: When
setting the USB_STREAM _MAX_TRANSFER_SI ZE_OVERWRI TE
dwOpt i ons flag, thisis aso the maximum transfer size.
fBlocking » TRUE for a blocking stream, which performs blocked 1/0;

» FAL SE for anon-blocking stream, which performs non-blocking 1/0.
For additional information, refer to Section 8.3.3.1.

dwOptions A bit-mask of USB transfer options, which can consist of a
combination of any of the following flags:

* USB | SOCH NQASAP — Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.

It is recommended that you use this flag for isochronous write

(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.

Thisflag is available only for Windows.

* USB | SOCH FULL_PACKETS ONLY — Preventstransfers of less
than the packet size on isochronous pipes.

« USB_BULK_| NT_URB_SI ZE_OVERRI DE_128K — Limitsthe
size of the USB Reguest Block (URB) to 128KB.

Thisflag is available only for Windows.

* USB_STREAM OVERWRI TE_BUFFER_WHEN FULL — When
there is not enough free space in aread stream's data buffer to
complete the transfer, overwrite old data in the buffer. Thisflag is
applicable only to read streams.

* USB_STREAM MAX TRANSFER SI ZE OVERRI DE — Overrides
the default maximum transfer size with the dwRx Si ze transfer size,
on Windows CE. Note that setting alarge dwRxSi ze value when
using this flag, may cause the transfersto fail due to host controller
limitations.

Thisflag is applicable only to read streams on Windows CE.

dwRxTxTimeout Maximum time, in milliseconds (ms), for the completion of a data
transfer between the stream and the device.
A value of zero indicates no timeout (infinite wait).

phStream Pointer to aunique identifier for the stream, to be returned by the
function and passed to the other WDU_St r eamXXX() functions

© 2015 Jungo Connectivity Ltd. 125 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.2. WDU_StreamStart

Purpose

Starts a stream, i.e., starts transfers between the stream and the device.
Data will be transferred according to the stream's direction — read/write.

Prototype

DWORD DLLCALLCONV WDU_Streanttart (
WDU_STREAM HANDLE hStrean);

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 126 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.9.3. WDU_StreamRead

Purpose
Reads data from aread stream to the application.

For ablocking stream (f Bl ocki ng=TRUE — see WDU_St r eamOpen()), the call to this
function is blocked until the specified amount of data (byt es) isread, or until the stream's
attempt to read from the device times out (i.e., the timeout period for transfers between the stream
and the device, as set in the dWRXTx Ti meout WDU_St r eanOpen() parameter [B.4.9.1],
expires).

For anon-blocking stream (f Bl ocki ng=FALSE), the function transfers to the application as
much of the requested data as possible, subject to the amount of data currently available in the
stream's data buffer, and returns immediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually read from the stream within the pdwByt esRead parameter.

Prototype

DWORD DLLCALLCONV WDU_St r eanRead(
HANDLE hStream
PVO D pBuf fer,
DWORD byt es,
DWORD * pdwByt esRead) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
pBuffer PVOID Output
bytes DWORD Input
pdwBytesRead DWORD* Output
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pBuffer Pointer to a data buffer to be filled with the data read from the stream
bytes Number of bytesto read from the stream
pdwBytesRead Pointer to a value indicating the number of bytes actually read from the
stream

© 2015 Jungo Connectivity Ltd. 127 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or WD OPERATI ON_FAI LED on failure.
In case of failure, call WDU_St r eantGet St at us() [B.4.9.6] to get the current stream status.

B.4.9.4. WDU_StreamWrite

Purpose
Writes data from the applciation to a write stream.

For ablocking stream (f Bl ocki ng=TRUE — see WDU_St r eanOpen()), the call to this
function is blocked until the entire data is written to the stream, or until the stream's attempt to
write to the device times out (i.e., the timeout period for transfers between the stream and the
device, as set in the dWRX Tx Ti meout WDU_St r eanOpen() parameter [B.4.9.1], expires).

For anon-blocking stream (f Bl ocki ng=FALSE), the function writes as much data as currently
possible to the stream's data buffer, and returns immediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually written to the stream within the pdwByt esW i t t en parameter.

Prototype

DWORD DLLCALLCONV WDU_Streamiit e(
HANDLE hStream
const PVO D pBuffer,
DWORD byt es,
DWORD *pdwByt esWitten);

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
pBuffer const PVOID Input
bytes DWORD Input
pdwBYytesWritten DWORD* Output

© 2015 Jungo Connectivity Ltd. 128 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

pBuffer Pointer to a data buffer containing the data to write to the stream

bytes Number of bytesto write to the stream

pdwBYytesWritten Pointer to a value indicating the number of bytes actually written to the
stream

Return Value
ReturnsWD_STATUS SUCCESS (0) on success, or WD OPERATI ON_FAI LED on failure.
In case of failure, call WDU_St r eantGet St at us() [B.4.9.6] to get the current stream status.

B.4.9.5. WDU_StreamFlush

Purpose

Flushes awrite stream, i.e., writes the entire contents of the stream's data buffer to the device.
The function blocks until the completion of al pending I/O on the stream.

This function can be called for both blocking and non-blocking streams.

Prototype

DWORD DLLCALLCONV WDU_St r ean! ush(
WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_ HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 129 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.9.6. WDU_StreamGetStatus

Purpose

Returns a stream's current status.

Prototype

DWORD DLLCALLCONV WDU_St r eantzet St at us(
WDU_STREAM HANDLE hStream
BOOL *pflsRunni ng,
DWORD *pdwLast Error,
DWORD *pdwByt esl nBuf fer);

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
pflsRunning BOOL* Output
pdwL astError DWORD* Output
pdwBytesInBuffer DWORD* Output
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pflsRunning Pointer to a value indicating the stream'’s current state:
* TRUE — the stream is currently running
* FALSE — the stream is currently stopped
pdwL astError Pointer to the last error associated with the stream.
Note: Calling the function also resets the stream's last error.
pawBytesInBuffer Pointer to the current bytes count in the stream's data buffer

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

130

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.9.7. WDU_StreamStop

Purpose

Stops an active stream, i.e., stops transfers between the stream and the device.

In the case of awrite stream, the function flushes the stream — i.e., writes its contents to the
device — before stopping it.

Prototype

DWORD DLLCALLCONV WDU_St r eantSt op(WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.8. WDU_StreamClose

Purpose

Closes an open stream.
The function stops the stream, including flushing its data to the device (in the case of awrite
stream), before closing it.

Prototype

DWORD DLLCALLCONV WDU_St r eanCl ose(WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput

© 2015 Jungo Connectivity Ltd. 131 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.4.10. WDU_ResetPipe

Purpose

Resets a pipe by clearing both the halt condition on the host side of the pipe and the stall
condition on the endpoint. This function is applicable for all pipes except the control pipe (pipe
0).

Prototype

DWORD WDU_Reset Pi pe(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwPipeNum DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The pipe's number

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

Remarks

This function should be used if apipeis halted, in order to clear the halt.

© 2015 Jungo Connectivity Ltd. 132 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.11. WDU_ResetDevice

Purpose

Resets a device.

Prototype

DWORD WDU_Reset Devi ce(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpti ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be either zero or:

* W _USB HARD RESET — reset the device even if it is not disabled.
After using thisoption it is advised to set the interface device using
WDU_Set I nterface() [B.4.2).

* W _USB CYCLE_PORT — simulate unplugging and replugging of
the device, prompting the operating system to re-enumerate the device
without resetting it.

This option is supported only on Windows XP and higher.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

* WOU_Reset Devi ce() issupported only on Windows and Windows CE, beginning with
Windows CE 5.0.
TheWD _USB_CYCLE_PORT option is supported on Windows XP and higher.

» The function issues arequest from the Windows USB driver to reset a hub port, provided the
Windows USB driver supports this feature.

© 2015 Jungo Connectivity Ltd. 133 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.12. WDU_SelectiveSuspend

Purpose

Submits a request to suspend a given device (selective suspend), or cancels a previous suspend
request.

Prototype

DWORD DLLCALLCONV WDU_Sel ecti veSuspend(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be set to either of the following

WDU_SELECTI VE_SUSPEND_OPTI ONS values:

* WDU_SELECTI VE_SUSPEND_SUBM T — submit arequest to
suspend the device.

* WOU_SELECTI VE_SUSPEND CANCEL — cancel a previous
reguest to suspend the device.

Return Value
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
If the deviceis busy when a suspend request is submitted

(dwOpt i ons=WDU_SELECTI VE_SUSPEND_SUBM T), the function returns
WD_OPERATI ON_FAI LED.

Remarks

WDU_Sel ect i veSuspend() is supported on Windows XP and higher.

© 2015 Jungo Connectivity Ltd. 134 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.13. WDU_Wakeup

Purpose

Enables/Disables the wakeup feature.

Prototype

DWORD WDU_Wakeup(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface
dwOptions Can be either:
* WDU WAKEUP_ENABLE — enable wakeup
OR:

« WDU_WAKEUP_DI SABLE — disable wakeup

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 135 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.4.14. WDU_GetLangIDs

Purpose

Reads alist of supported language | Ds and/or the number of supported language IDs from a

device.

Prototype

DWORD DLLCALLCONV WDU_Get Langl Ds(
WDU_DEVI CE_HANDLE hDevi ce,
PBYTE pbNunSupport edLangl Ds,

WDU_LANG D *plLangl Ds,

BYTE bNuniangl Ds);

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pbNumSupportedLanglDs | PBYTE Output
pLanglDs WDU_LANGID* Output
bNumLangIDs BYTE Input
Description
Name Description
hDevice A unique identifier for the device/interface

pbNumSupportedL anglDs

Parameter to receive number of supported language IDs

pLanglDs Array of language IDs. If bNunmLangl Ds is not zero the function
will fill this array with the supported language I Ds for the device.
bNumLangIDs Number of IDsin the pLanglDs array

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

136 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Remarks

» If dwiNunLangl Ds is zero the function will return only the number of supported language IDs
(inpbNunSuppor t edLangl Ds) but will not update the language IDs array (pLangl Ds)
with the actual IDs. For thisusage pLangl Ds can be NULL (sinceit is not referenced) but
pbNunSupport edLangl Ds must not be NULL.

* pbNunBupport edLangl Ds can be NULL if the user only wantsto receive the list of

supported language 1Ds and not the number of supported IDs.
In this case bNuniangl Ds cannot be zero and pLangl Ds cannot be NULL.

* If the device does not support any language I Ds the function will return success. The caller
should therefore check the value of * pbNunSuppor t edLangl Ds after the function returns.

 If thesize of thepLangl Ds array (bNunLangl Ds) is smaller than the number of IDs
supported by the device (* pbNunmSuppor t edLangl Ds), the function will read and return

only thefirst bNurmLangl Ds supported language IDs.

B.4.15. WDU_GetStringDesc

Purpose

Reads a string descriptor from a device by string index.

Prototype

DWORD DLLCALLCONV WDU_Get Stri ngDesc(
WDU_DEVI CE_HANDLE hDevi ce,

BYTE bStr | ndex,

PBYTE pbBuf,

DWORD dwBuf Si ze,

WDU_LANG D | angl D,
PDWORD pdwDescSi ze) ;

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
bStrindex BYTE Input

pbBuf PBYTE Output
dwBuUfSize DWORD Input

lang! D WDU_LANGID Input
pawDescSize PDWORD Output

© 2015 Jungo Connectivity Ltd.

137

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description
Name Description
hDevice A unique identifier for the device/interface
bStrindex The index of the string descriptor to read
pbBuf Pointer to a buffer to be filled with the string descriptor
dwBuUfSize The size of the pbBuf buffer, in bytes
langlD The language 1D to be used in the get string descriptor request. If

this parameter is O, the request will use the first supported language ID
returned by the device.

pdwDescSize An optional DWORD pointer to be filled with the size of the string
descriptor read from the device.
If NULL, the size of the string descriptor will not be returned.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

If the size of the pbBuf buffer is smaller than the size of the string descriptor
(dwBuf Si ze* pdwDescSi ze), the returned descriptor will be truncated to the provided buffer
Size (dwBuf Si ze).

B.5. USB Data Types

The types described in this section are declared in the WinDriver/include/windrvr.h header file,
unless otherwise specified in the documentation.

B.5.1. WD DEVICE_REGISTRY_PROPERTY
Enumeration

Enumeration of device registry property identifiers.
String properties are returned in NUL L-terminated WCHAR array format.

4, For more information regarding the properties described in this enumaration, refer to the
a description of the Windows | oGet Devi cePr opert y() function'sDevi cePr operty
parameter in the Microsoft Development Network (M SDN) documentation.

© 2015 Jungo Connectivity Ltd. 138 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Enum Value

Description

WdDevicePropertyDeviceDescription

Device description

WdDevicePropertyHardwarel D

The device's hardware IDs

WdDevicePropertyCompatiblel Ds

The device's compatible IDs

WdDevicePropertyBootConfiguration

The hardware resources assigned to the
device by the firmware, in raw dataform

WdDevicePropertyBootConfigurationTrans ated

The hardware resources assigned to the
device by the firmware, in trandated form

WdDevicePropertyClassName The name of the device's setup class, in text
format
WdDevicePropertyClassGuid The GUID for the device's setup class (string

format)

WdDevicePropertyDriverkK eyName

The name of the driver-specific registry key

WdDevicePropertyManufacturer

Device manufacturer string

WdDevicePropertyFriendlyName

Friendly device name (typically defined by
the classinstaller), which can be used to
distinguish between two similar devices

WdDevicePropertyL ocationl nformation

Information about the device's Location on
the bus (string format).

The interpertation of thisinformation is bus-
specific.

WdDevicePropertyPhysical DeviceObjectName

The name of the Physical Device Object
(PDO) for the device

WdDevicePropertyBusTypeGuid

The GUID for the bus to which the deviceis
connected

WdDevicePropertylL egacyBusType

The bustype (e.g., PCIBus or PCMCIABuUS)

WdDevicePropertyBusNumber

The legacy bus number of the bus to which
the device is connected

WdDevicePropertyEnumeratorName

The name of the device's enumerator (e.g.,
"PCI" or "root")

WdDevicePropertyAddress

The device's bus address.
The interpertation of this addressis bus-
specific.

WdDevicePropertyUINumber

A number associated with the device that
can be displayed in the user interface

WdDevicePropertyl nstall State

The device'sinstallation state

WdDevicePropertyRemoval Policy

The device's current removal policy
(Windows XP and |ater)

© 2015 Jungo Connectivity Ltd. 139

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2. USB Structures

The following figure depicts the structure hierarchy used by WinDriver's USB API. The arrays
situated in each level of the hierarchy may contain more elements than are depicted in the
diagram. Arrows are used to represent pointers. In the interest of clarity, only one structure at
each level of the hierarchy is depicted in full detail (with all of its elements listed and pointers

from it pictured).

© 2015 Jungo Connectivity Ltd. 140 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

FigureB.2. WinDriver USB Structures

WDU DEVICE
* Descriptor

* Pipel

=* pConfigs

" pActiveConfig

pt s s s s s R m s m AR =TT pActivelnterface

L] 1

:I 1

1 L] 1

M [] 1

M [] i |
' [] []
1" h J
' :-b WD COMFIGURATION WDU CONFIGURATION WD CONFIGURATION
. * Descriptor

. " dwhuminterfaces

I1 | - - - - - - - - - - - - - - -* plﬂterfaoeg

l.

'I

Il

, TS5 TErEEEEEEEEEESEEEEES L]

1 L]

. Y

1o WD INTERFACE WDU INTERFACE WD INTERFACE
1 T dwNumAltSettings

’ r|=* pActivebtltSetting

|] 1

[] 1

[] 1

. -

M []

: y

WO AL TERNATE SETTING WDOU ALTERNATE SETTING WO A TERNATE SETTING

* Descriptor
® * pEndpointDescriptors
= * pPipes

* blLength

* pDescriptorType
* bEndpointfddress
* bmAttributes

* widaxPacketSize
* blnterval

WDU ENDPOINT DESCRIPTOR

WDU PIPE INFO

T otype

* blnterval

T dwMNumber
T dwhlaximumPacketSize

" direction

© 2015 Jungo Connectivity Ltd.

141

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.1. WDU_MATCH_TABLE Structure

USB match table structure.

(*) For al field members, if valueis set to zero — match all.

Field Type Description

wVendorld WORD Required USB Vendor ID to detect, as assigned by USB-IF
(*)

wProductld WORD Required USB Product 1D to detect, as assigned by the
product manufacturer (*)

bDeviceClass BYTE The device's class code, as assigned by USB-IF (*)

bDeviceSubClass BYTE The device's sub-class code, as assigned by USB-IF (*)

bl nterfaceClass BYTE The interface's class code, as assigned by USB-IF (*)

binterfaceSubClass | BYTE The interface's sub-class code, as assigned by USB-IF (*)

binterfaceProtocol | BYTE The interface's protocol code, as assigned by USB-IF (*)

B.5.2.2. WDU_EVENT_TABLE Structure

USB events table structure.
This structure is defined in WinDriver/include/wdu_lib.h.

Field Type Description

pfDeviceAttach | WDU_ATTACH_CALLBACK Will be called by WinDriver
when adevice is attached

pfDeviceDetach | WDU DETACH_CALLBACK Will be called by WinDriver

when adevice is detached

pfPowerChange | WDU_POWER_CHANGE _CALLBACK | Will be caled by WinDriver
when thereisachangein a
device's power state

pUserData PVOID Pointer to user-mode data to be
passed to the callbacks

© 2015 Jungo Connectivity Ltd. 142 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.3. WDU_DEVICE Structure

USB device information structure.

Field Type Description

Descriptor WDU_DEVICE_DESCRIPTOR Device descriptor information
structure [B.5.2.7]

Pipe0 WDU_PIPE_INFO Pipe information structure [B.5.2.11]
for the device's default control pipe
(pipe0)

pConfigs WDU_CONFIGURATION* Pointer to the beginning of an

array of configuration information
structures [B.5.2.4] describing the
device's configurations

pActiveConfig

WDU_CONFIGURATION*

Pointer to the device's active
configuration information
structure [B.5.2.4], stored in the
pConfi gs array

pActivel nterface

WDU_INTERFACE*
[WD_USB_MAX_INTERFACES]

Array of pointersto interface
information structures [B.5.2.5];

the non-NULL elementsin the

array represent the device's active
interfaces.

On Windows, the number of active
interfaces is the number of interfaces
supported by the active configuration,
asstored inthe pAct i veConfi g- >
dwNum nt er f aces field.

On Linux and Windows CE,

the number of active interfaces
iscurrently always 1, because

the WDU _ATTACH CALLBACK
device-attach callback [B.3.1] is
called for each device interface.

© 2015 Jungo Connectivity Ltd.

143

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.4. WDU_CONFIGURATION Structure

Configuration information structure.

Field Type Description

Descriptor WDU_CONFIGURATION_DESCRIPTOR | Configuration
descriptor information
structure [B.5.2.8]

dwNuminterfaces | DWORD Number of interfaces
supported by this

configuration

plnterfaces

WDU_INTERFACE*

Pointer to the beginning

of an array of

interface information
structures [B.5.2.5] for the
configuration's interfaces

B.5.2.5. WDU_INTERFACE Structure

Interface information structure.

Field

Type

Description

pAlternateSettings

WDU_ALTERNATE_SETTING*

Pointer to the beginning of an array
of alternate setting information
structures [B.5.2.6] for the
interface's alternate settings

dwNumAItSettings

DWORD

Number of alternate settings
supported by thisinterface

pActiveAltSetting

WDU_ALTERNATE_SETTING*

Pointer to an alternate setting
information structure [B.5.2.6]
for the interface's active alternate
setting

© 2015 Jungo Connectivity Ltd.

144

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.6. WDU_ALTERNATE_SETTING Structure

Alternate setting information structure.

Field Type Description
Descriptor WDU_INTERFACE_DESCRIPTOR Interface descriptor
information

structure [B.5.2.9]

pEndpointDescriptors | WDU_ENDPOINT_DESCRIPTOR* Pointer to the beginning

of an array of endpoint
descriptor information
structures [B.5.2.10] for the
alternate setting's endpoints

pPipes WDU_PIPE_INFO* Pointer to the beginning of
an array of pipe information
structures [B.5.2.11] for the
alternate setting's pipes

B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure

USB device descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (18 bytes)

bDescriptorType UCHAR | Device descriptor (0x01)

bcdUSB USHORT | Number of the USB specification with which the device
complies

bDeviceClass UCHAR | Thedevice'sclass

bDeviceSubClass UCHAR | The device's sub-class

bDeviceProtocol UCHAR | The device's protocol

bM axPacketSizeO UCHAR | Maximum size of transferred packets

idVendor USHORT | Vendor ID, as assigned by USB-IF

idProduct USHORT | Product ID, as assigned by the product manufacturer

bcdDevice USHORT | Device release number

iManufacturer UCHAR | Index of manufacturer string descriptor

iProduct UCHAR | Index of product string descriptor

iSerialNumber UCHAR | Index of serial number string descriptor

bNumConfigurations | UCHAR | Number of possible configurations

© 2015 Jungo Connectivity Ltd. 145 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure

USB configuration descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor

bDescriptorType UCHAR | Configuration descriptor (0x02)

wTotalLength USHORT | Total length, in bytes, of data returned

bNumlnterfaces UCHAR | Number of interfaces

bConfigurationValue | UCHAR | Configuration number

iConfiguration UCHAR | Index of string descriptor that describes this configuration

bmAttributes UCHAR | Power settings for this configuration:
* D6 — self-powered
» D5 — remote wakeup (allows device to wake up the
host)

M axPower UCHAR | Maximum power consumption for this configuration, in
2mA units

B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure

USB interface descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (9 bytes)
bDescriptorType UCHAR | Interface descriptor (0x04)

binterfaceNumber | UCHAR | Interface number

bAlternateSetting UCHAR | Alternate setting number

bNumEndpoints UCHAR | Number of endpoints used by thisinterface

bl nterfaceClass UCHAR | Theinterface's class code, as assigned by USB-IF
binterfaceSubClass | UCHAR | The interface's sub-class code, as assigned by USB-IF
binterfaceProtocol | UCHAR | Theinterface's protocol code, as assigned by USB-IF
ilnterface UCHAR | Index of string descriptor that describes this interface

© 2015 Jungo Connectivity Ltd.

146 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure

USB endpoint descriptor information structure.

Field Type

Description

bLength UCHAR

Size, in bytes, of the descriptor (7 bytes)

bDescriptorType UCHAR

Endpoint descriptor (0x05)

bEndpointAddress | UCHAR

Endpoint address: Use bits 0—3 for endpoint number, set
bits 4-6 to zero (0), and set bit 7 to zero (0) for outbound
data and to one (1) for inbound data (ignored for control
endpoints).

bmAttributes UCHAR

Specifies the transfer type for this endpoint (control,
interrupt, isochronous or bulk). See the USB specification for
further information.

wMaxPacketSize USHORT

Maximum size of packets this endpoint can send or receive

binterval UCHAR

Interval, in frame counts, for polling endpoint data transfers.
Ignored for bulk and control endpoints.

Must equal 1 for isochronous endpoints.

May range from 1 to 255 for interrupt endpoints.

B.5.2.11. WDU_PIPE_

USB pipe information structure.

INFO Structure

Field Type Description

dwNumber DWORD | Pipe number; zero for the default control pipe

dwMaximumPacketSize | DWORD | Maximum size of packets that can be transferred using
this pipe

type DWORD | Transfer type for this pipe

direction DWORD | Direction of the transfer:
* WU DI R_I Nor WbU_DI R_QUT for isochronous,
bulk or interrupt pipes.
*WDU_ DI R_I N_QUT for control pipes.

dwlnterval DWORD | Interval in milliseconds.

Relevant only to interrupt pipes.

© 2015 Jungo Connectivity Ltd.

147 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6. General WD_xxx Functions

B.6.1. Calling Sequence WinDriver — General Use

Thefollowing isatypical calling sequence for the WinDriver API.
FigureB.3. WinDriver-API Calling Sequence

WD_Open()
+
WD Version()

¥ ¥

General WinDriver API:

WinDriver's Hardware PrintDbgiMessage() ;
Accecs AP WD_DebugAdd()
eeess WD_Sleep() ;

WD Logxxx() ;

h J

WD_Close()

» Werecommend calling the WinDriver function WD_Ver si on() [B.6.3] after calling
WD Open() [B.6.2] and before calling any other WinDriver function. Its purposeisto
return the WinDriver kernel module version number, thus providing the means to verify
that your application is version compatible with the WinDriver kernel module.

* WD DebugAdd() [B.6.6] and WD_SI eep() [B.6.8] can be called anywhere after
WD_Open()

© 2015 Jungo Connectivity Ltd. 148 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6.2. WD_Open()

Purpose

Opens a handle to access the WinDriver kernel module.
The handleis used by all WinDriver APIs, and therefore must be called before any other

WinDriver API iscdled.
Prototype

HANDLE WD _Open(voi d);

Return Value

The handle to the WinDriver kernel module.
If device could not be opened, returns | NVALI D_HANDLE VAL UE.

Remarks

If you are aregistered user, please refer to the documentation of WD_Li cense() [B.6.9] for an
example of how to register your WinDriver license.

Example

HANDLE hWD;
hWw = WD _Qpen() ;

if (hVWD == | NVALI D_HANDLE VALUE)
{

}

printf("Cannot open WnDriver device\n");

© 2015 Jungo Connectivity Ltd. 149 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6.3. WD_Version()

Purpose

Returns the version number of the WinDriver kernel module currently running.

Prototype

DWORD WD _Ver si on(
HANDLE hWD,
WD_VERSI ON *pVer) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
pVer WD_VERSION*
o dwVer DWORD Output
s cVer CHAR[128] Output
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pVer Pointer to a WinDriver version information structure:
o dwVer The version number
e cVer Version information string.
The version string's size is limited to 128 characters (including the
NULL terminator character).

Return Value

Returns\WD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 150 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Example

WD_VERSI ON ver;

BZERQ(ver) ;

WD _Ver si on(hWD, &ver);
printf("%\n", ver.cVer);
if (ver.dwer < WD _VER)

{
}

printf("Error - incorrect WnDriver version\n");

B.6.4. WD _Close()

Purpose

Closes the access to the WinDriver kernel module.

Prototype

voi d WD_C ose(HANDLE hWD) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]

Return Value

None

Remarks

This function must be called when you finish using WinDriver kernel module.

Example

WD _Cl ose(hWD) ;

© 2015 Jungo Connectivity Ltd. 151 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6.5. WD _Debug()

Purpose

Sets debugging level for collecting debug messages.

Prototype

DWORD WD _Debug(
HANDLE hWD,
WD_DEBUG * pDebug) ;

Parameters
Name Type I nput/Output
hwD HANDLE I nput
pDebug WD_DEBUG* Input
e dwCmd DWORD Input
* dwLevel DWORD Input
* dwSection DWORD Input
» dwLevelMessageBox | DWORD Input
» dwBufferSize DWORD Input

© 2015 Jungo Connectivity Ltd.

152

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]

pDebug Pointer to a debug information structure:

e dwCmd Debug command: Set filter, Clear buffer, etc.
For more details please refer to DEBUG_COMVAND in windrvr .h.

* dwLevel Used for dwCnd=DEBUG_SET_FI LTER. Setsthe debugging level
to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG_LEVEL in windrvr.h.

e dwSection Used for dwCnd=DEBUG_SET_FI LTER. Setsthe sectionsto
collect: 1/0, Memory, Interrupt, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTI ONin windrvr .h.

» dwLevelMessageBox | Used for dwCnmd=DEBUG_SET_FI LTER. Sets the debugging level

to print in a message box.
For more details please refer to DEBUG_LEVEL in windrvr.h.

» dwBufferSize

Used for dwCnd=DEBUG_SET BUFFER. The size of buffer in the
kernel.

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Example

WD_DEBUG dbg;

BZERQ(dbg) ;

dbg. dwCnd = DEBUG SET_FI LTER;

dbg. dwLevel = D_ERROR;
dbg. dwSection = S _ALL;

dbg. dwLevel MessageBox = D_ERROR;

VD _Debug(hWD, &dbg) :

B.6.6. WD _DebugAdd()

Purpose

Sends debug messages to the debug log. Used by the driver code.

© 2015 Jungo Connectivity Ltd.

153 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Prototype

DWORD VD_DebugAdd(
HANDLE hWD,
WD_DEBUG _ADD * pDat a) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
pData WD_DEBUG_ADD*
* dwLevel DWORD Input
* dwSection DWORD Input
* pcBuffer CHAR[256] Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pData Pointer to an additional debug information structure:
* dwLevel Assigns the level in the Debug Monitor, in which the data will be
declared.
If dwLevel iszero, D ERRORwill be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.
* dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared.
If dwSect i oniszero, S M SC section will be declared.
For more details please refer to DEBUG_SECTI ONin windrvr .h.
* pcBuffer The string to copy into the message log.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Example
WD_DEBUG_ADD add;

BZERQ(add) ;

add. dwLevel = D WARN,

add. dwSection = S M SC,

sprintf(add. pcBuffer, "This nessage will be displayed in "
"t he Debug Monitor\n");

WD_DebugAdd(hWD, &add);

© 2015 Jungo Connectivity Ltd. 154 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6.7. WD_DebugDump()

Purpose

Retrieves debug messages buffer.

Prototype

DWORD WD _DebugDunp(
HANDLE hWD,
WD _DEBUG _DUMP * pDebugDunp) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
pDebug WD_DEBUG_DUMP* I nput
* pcBuffer PCHAR I nput/Output
* dwSize DWORD Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pDebugDump Pointer to a debug dump information structure:
* pcBuffer Buffer to receive debug messages
dwSize Size of buffer in bytes

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Example

char buffer[1024];

WD_DEBUG DUWMP dunp;

dunp. pcBuf f er =buf f er;

dunp. dwSi ze = si zeof (buffer);
WD _DebugDunp(hWD, &dunp) ;

© 2015 Jungo Connectivity Ltd. 155

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.6.8. WD_Sleep()

Purpose

Delays execution for a specific duration of time.

Prototype

DWORD WD _SI eep(
HANDLE hWD,
WD _SLEEP *pSl eep);

Parameters
Name Type I nput/Output
hwD HANDLE Input
pSleep WD_SLEEP*
 dwMicroSeconds DWORD Input
* dwOptions DWORD Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pSleep Pointer to a sleep information structure

* dwMicroSeconds Sleep time in microseconds — 1/1,000,000 of a second

* dwOptions A bit-mask, which can be set to either of the following values:

o Zero (0) — Delay execution by consuming CPU cycles
(busy sleep); thisisthe default.

 SLEEP_NON BUSY — Delay execution without consuming CPU
resources (non-busy sleep).
Note: The accuracy of non-busy sleep is machine-dependent and
cannot be guaranteed for short sleep intervals (< 1 millisecond).

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Example usage: to access slow response hardware.

© 2015 Jungo Connectivity Ltd. 156 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Example
WD _Sl eep sl p;

BZERO(sl p) ;
sl p. dwM croSeconds = 200;

WD_Sl| eep(hWD, &sl p);

B.6.9. WD _License()

Purpose

Transfers the license string to the WinDriver kernel module and returns information regarding the

license type of the specified license string.

When using the WDU USB APIs[B.2] your WinDriver license registration is done viathe
call toWDU I ni t () [B.4.1], so you do not need to call WD_Li cense() directly from your

code.

Prototype

DWORD WD Li cense(
HANDLE hWD,
WD _LI CENSE *pLi cense);

Parameters
Name Type I nput/Output
hwD HANDLE Input
pLicense WD_LICENSE*
* cLicense CHARJ[] Input
* dwLicense DWORD Output
* dwLicense2 DWORD Output

© 2015 Jungo Connectivity Ltd. 157

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Description

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]

pLicense Pointer to a WinDriver license information structure:

* cLicense A buffer to contain the license string that is to be transferred to the
WinDriver kernel module. If an empty string is transferred, then
WinDriver kernel module returns the current license type to the
parameter dwLi cense.

e dwLicense Returns the license type of the specified license string (CLi cnhese).
The return value is a bit-mask of license flags, defined asan enum in
windrvr.h. Zero signifiesan invalid license string. Additional flags for
determining the license type are returned in dwLi cense?2, if needed.

* dwLicense2 Returns additional flags for determining the license type, if

dwLi cense cannot hold al the relevant information (otherwise —
Zero)

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

When using aregistered version, this function must be called before any other WinDriver API
call, apart from WD_Open() [B.6.2], in order to register the license from the code.

Example

Example usage: Add registration routine to your application:
DWORD Regi st er WnbDri ver ()

{
HANDLE h\\D;

WD LI CENSE i c;

DWORD dwsSt at us = WD_| NVALI D_HANDLE;

hWwb = WD_Open();

i f (hWD! =1 NVALI D_HANDLE_VALUE)

{
BZER(O(| i c);

/* Replace the followi ng string with your license string: */
strcpy(lic.cLicense, "12345abcdel2345. ConpanyNane");

dwSt atus = WD _Li cense(hWD, &lic);

WD _Cl ose(hWD) ;

}

return dwst at us;

© 2015 Jungo Connectivity Ltd.

158 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7. User-Mode Utility Functions

This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented on all
operating systems supported by WinDriver.

B.7.1. Stat2Str

Purpose

Retrieves the status string that corresponds to a status code.

Prototype

const char *Stat2Str(DWORD dwsSt at us) ;

Parameters
Name Type I nput/Output
dwStatus DWORD Input
Description
Name Description
* dwStatus A numeric status code

Return Value

Returns the verbal status description (string) that corresponds to the specified numeric status code.

Remarks

See Section B.8 for acomplete list of status codes and strings.

© 2015 Jungo Connectivity Ltd. 159 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.2. get_os_type

Purpose

Retrieves the type of the operating system.

Prototype

OS_TYPE get _os_type(void);

Return Value

Returns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT _DETECT.

© 2015 Jungo Connectivity Ltd. 160 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.3. ThreadStart

Purpose

Creates athread.

Prototype

DWORD ThreadSt art (
HANDLE *phThr ead,
HANDLER_FUNC pFunc,

voi d *pData);

Parameters

Name Type I nput/Output

phThread HANDLE* Output

pFunc typedef void (*HANDLER_FUNC)(Input

void *pData);

pData VOID* I nput
Description

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread isto execute. (The

handler's prototype — HANDLER FUNC — is defined in utils.h.)
pData Pointer to the data to be passed to the new thread

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 161 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.4. ThreadWait

Purpose

Waits for athread to exit.

Prototype

voi d ThreadWai t (HANDLE hThread);

Parameters
Name Type I nput/Output
hThread HANDLE Input
Description
Name Description
hThread The handle to the thread whose completion is awaited

Return Value

None

© 2015 Jungo Connectivity Ltd. 162

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.5. OskEventCreate

Purpose

Creates an event object.

Prototype

DWORD OsEvent Cr eat e(HANDLE *phOsEvent) ;

Parameters
Name Type I nput/Output
phOsEvent HANDLE* Output
Description
Name Description
phOsEvent The pointer to avariable that receives a handle to the newly created
event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 163 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.6. OsEventClose

Purpose

Closes a handle to an event object.

Prototype

voi d CsEvent C ose(HANDLE hOsEvent);

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object to be closed

Return Value

None

© 2015 Jungo Connectivity Ltd.

164

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.7. OsEventWait

Purpose

Waits until a specified event object isin the signaled state or the time-out interval elapses.

Prototype

DWORD OsEvent Wi t (
HANDLE hOsEvent,

DWORD dwSecTi neout) ;

Parameters

Name Type I nput/Output

hOsEvent HANDLE Input

dwSecTimeout DWORD Input
Description

Name Description

hOsEvent The handle to the event object

dwSecTimeout Time-out interval of the event, in seconds.

For an infinite wait, set thetimeout to | NFI NI TE.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

165

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.8. OsEventSignal

Purpose

Sets the specified event object to the signaled state.

Prototype

DWORD GsEvent Si gnal (HANDLE hGsEvent) ;

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 166

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.9. OskEventReset

Purpose

Resets the specified event object to the non-signaled state.

Prototype

DWORD OGsEvent Reset (HANDLE hGsEvent);

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

167

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.10. OsMutexCreate

Purpose

Creates amutex object.

Prototype

DWORD OsMut exCr eat e(HANDLE * phOsMut ex) ;

Parameters
Name Type I nput/Output
phOsM utex HANDLE* Output
Description
Name Description
phOsM utex The pointer to avariable that receives a handle to the newly created
mutex object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 168 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.11. OsMutexClose

Purpose

Closes a handle to a mutex object.

Prototype

voi d CsMut exCl ose(HANDLE hOsMit ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be closed

Return Value

None

© 2015 Jungo Connectivity Ltd.

169

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.12. OsMutexLock

Purpose

L ocks the specified mutex object.

Prototype

DWORD OsMut exLock(HANDLE hOsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be locked

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

170

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.13. OsMutexUnlock

Purpose

Releases (unlocks) alocked mutex object.

Prototype

DWORD OsMut exUnl ock(HANDLE hGsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be unlocked

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd.

171

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.14. PrintDbgMessage

Purpose

Sends debug messages to the Debug Monitor.

Prototype

voi d Print DbgMessage(
DWORD dwievel ,
DWORD dwSect i on,
const char *fornat

[, argunent]...);
Parameters
Name Type I nput/Output
dwLevel DWORD Input
dwSection DWORD Input
format const char* Input
argument I nput
Description
Name Description
dwLevel Assignsthe level in the Debug Monitor, in which the data will be

declared. If zero, D_ ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.

dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared. If zero, S M SCwill be declared.
For more details please refer to DEBUG_SECTION in windrvr.h.

format Format-control string

argument Optional arguments, limited to 256 bytes

Return Value

None

© 2015 Jungo Connectivity Ltd. 172 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.15. WD _LogStart

Purpose

Opensalog file.

Prototype

DWORD WD _LogSt art (
const char *sFil eNane,
const char *shbde);

Parameters

Name Type I nput/Output
skileName const char* Input

sMode const char* Input
Description

Name Description

skileName Name of log file to be opened

sMode Type of access permitted.

For example, NULL or w opens an empty file for writing, and if the
given file exists, its contents are destroyed;
a opens afile for writing at the end of thefile (i.e., append).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Oncealog fileis opened, all API callsarelogged in thisfile.
Y ou may add your own printouts to the log file by calling WD_LogAdd() [B.7.17].

© 2015 Jungo Connectivity Ltd. 173 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.7.16. WD_LogStop

Purpose

Closesalogfile.

Prototype

VO D WD_LogSt op(voi d);

Return Value

None

B.7.17. WD_LogAdd

Purpose

Adds user printoutsinto log file.

Prototype

VO D DLLCALLCONV WD _LogAdd(
const char *sFor mat

[, argunent]...);

Parameters

Name Type I nput/Output
sFormat const char* Input
argument I nput
Description

Name Description

sFormat Format-control string

argument Optional format arguments

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© 2015 Jungo Connectivity Ltd. 174 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

B.8. WinDriver Status Codes

B.8.1. Introduction

Most of the WinDriver functions return a status code, where zero (WD_STATUS _SUCCESS)
means success and a non-zero value means failure.

The St at 2St r () functions can be used to retrieve the status description string for a given status
code. The status codes and their descriptive strings are listed below.

B.8.2. Status Codes Returned by WinDriver

Status Code Description

WD_STATUS SUCCESS Success

WD_STATUS INVALID_WD_HANDLE | Invalid WinDriver handle
WD_WINDRIVER_STATUS ERROR Error
WD_INVALID_HANDLE Invalid handle
WD_INVALID_PIPE_ NUMBER Invalid pipe number
WD_READ_WRITE_CONFLICT Conflict between read and write operations
WD_ZERO PACKET_SIZE Packet sizeis zero
WD_INSUFFICIENT_RESOURCES Insufficient resources
WD_UNKNOWN_PIPE_TYPE Unknown pipe type
WD_SYSTEM_INTERNAL_ERROR Internal system error
WD_DATA_MISMATCH Data mismatch
WD_NO_LICENSE No valid license
WD_NOT_IMPLEMENTED Function not implemented
WD_FAILED_ENABLING_INTERRUPT | Failed enabling interrupt
WD_INTERRUPT_NOT_ENABLED Interrupt not enabled
WD_RESOURCE_OVERLAP Resource overlap

WD _DEVICE _NOT_FOUND Device not found
WD_WRONG_UNIQUE_ID Wrong unique 1D
WD_OPERATION_ALREADY_DONE Operation already done
WD_USB_DESCRIPTOR_ERROR USB descriptor error
WD_SET_CONFIGURATION_FAILED Set configuration operation failed
WD_CANT_OBTAIN_PDO Cannot obtain PDO
WD_TIME_OUT_EXPIRED Timeout expired
WD_IRP_CANCELED IRP operation canceled

© 2015 Jungo Connectivity Ltd. 175 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Status Code

Description

WD_FAILED_USER_MAPPING

Failed to map in user space

WD_FAILED_KERNEL_MAPPING

Failed to map in kernel space

WD_NO_RESOURCES_ON_DEVICE

No resources on the device

WD_NO_EVENTS

No events

WD_INVALID_PARAMETER

Invalid parameter

WD_INCORRECT_VERSION

Incorrect WinDriver version installed

WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received an invalid OCTL
WD_OPERATION_FAILED Operation failed

WD_INVALID_32BIT_APP

Received an invalid 32-bit IOCTL

WD_TOO MANY_HANDLES

No room to add handle

WD_NO_DEVICE_OBJECT

Driver not installed

B.8.3. Status Codes Returned by USBD

The following WinDriver status codes comply with USBD XXX status codes returned by the

USB stack drivers.

Status Code Description

USBD Satus Types

WD_USBD_STATUS SUCCESS USBD: Success
WD_USBD_STATUS PENDING USBD: Operation pending
WD_USBD_STATUS ERROR USBD: Error
WD_USBD_STATUS HALTED USBD: Halted

USBD Satus Codes

(NOTE: The status codes consist of one of the status types above and an error code, i.e.,
OXXYYYYYYYL, where X=statustypeand YYYYYYY =error code. The same error codes
may also appear with one of the other status types as well.)

HC (Host Controller) Satus Codes

(NOTE: Theseusethe WD _USBD_STATUS HALTED status type.)

WD_USBD_STATUS CRC

HC status: CRC

WD_USBD_STATUS BTSTUFF

HC status: Bit stuffing

WD_USBD_STATUS DATA_TOGGLE_MISMATCH

HC status: Data toggle mismatch

WD_USBD_STATUS STALL_PID

HC status: PID stall

WD_USBD_STATUS DEV_NOT_RESPONDING

HC status: Device not responding

WD_USBD_STATUS PID_CHECK_FAILURE

HC status: PID check failed

© 2015 Jungo Connectivity Ltd.

176 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Status Code

Description

WD_USBD_STATUS UNEXPECTED_PID

HC status: Unexpected PID

WD_USBD_STATUS DATA_OVERRUN

HC status: Data overrun

WD_USBD_STATUS DATA_UNDERRUN

HC status: Data underrun

WD_USBD_STATUS RESERVED1

HC status; Reservedl

WD_USBD_STATUS RESERVED?2

HC status: Reserved?2

WD_USBD_STATUS BUFFER_OVERRUN

HC status: Buffer overrun

WD_USBD_STATUS BUFFER_UNDERRUN

HC status: Buffer Underrun

WD_USBD_STATUS NOT_ACCESSED

HC status: Not accessed

WD_USBD_STATUS FIFO

HC status: FIFO

For Windows only:

WD_USBD_STATUS XACT_ERROR

HC status: The host controller has
set the Transaction Error (XactErr)
bit in the transfer descriptor's
status field

WD_USBD_STATUS BABBLE_DETECTED

HC status: Babble detected

WD_USBD_STATUS DATA_BUFFER_ERROR

HC status: Data buffer error

For Windows CE only:

WD_USBD_STATUS |SOCH

USBD: Isochronous transfer failed

WD_USBD_STATUS NOT_COMPLETE

USBD: Transfer not completed

WD_USBD_STATUS CLIENT BUFFER

USBD: Cannot write to buffer

For all platforms:

WD_USBD_STATUS CANCELED

USBD: Transfer canceled

stalled:

Returned by HCD (Host Controller Driver) if a transfer is submitted to an endpoint that is

WD_USBD_STATUS ENDPOINT_HALTED

HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS NO MEMORY

USBD: Out of memory

WD_USBD_STATUS INVALID_URB_FUNCTION

USBD: Invalid URB function

WD_USBD_STATUS_INVALID_PARAMETER

USBD: Invalid parameter

Returned if client driver attempts to close an endpoint,
interface, or configuration with outstanding transfers:

WD_USBD_STATUS ERROR_BUSY

USBD: Attempted to close
endpoint/interface/configuration
with outstanding transfer

© 2015 Jungo Connectivity Ltd. 177

CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Status Code Description

Returned by USBD if it cannot complete a URB request. Typically thiswill be returned in the
URB status field (when the IRP is completed) with a more specific error code. The IRP status
codes are indicated in WinDriver's Debug Monitor tool (wddebug_gui / wddebug):

WD_USBD_STATUS REQUEST_FAILED USBD: URB request failed

WD_USBD_STATUS INVALID_PIPE_ HANDLE USBD: Invalid pipe handle

Returned when there is not enough bandwidth available to open a requested endpoint:

WD_USBD_STATUS NO_BANDWIDTH USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS INTERNAL_HC_ERROR USBD: Host controller error

Returned when a short packet terminates the transfer, i.e., USBD_SHORT_TRANSFER_OK bit
not set:

WD_USBD_STATUS ERROR_SHORT_TRANSFER USBD: Transfer terminated with
short packet

Returned if the requested start frame is not within USBD_| SO _START _FRAME _RANGE of the
current USB frame (NOTE: The stall bit is set):

WD_USBD _STATUS BAD_START_FRAME USBD: Start frame outside range

Returned by HCD (Host Controller Driver) if all packetsin an isochronous transfer complete
with an error:

WD_USBD_STATUS ISOCH_REQUEST_FAILED HCD: Isochronous transfer
completed with error

Returned by USBD if the frame length control for a given HC (Host Controller) is already taken
by another driver:

WD_USBD_STATUS FRAME_CONTROL_OWNED | USBD: Frame length control
already taken

Returned by USBD if the caller does not own frame length control and attempts to release or
modify the HC frame length:

WD USBD STATUS FRAME_CONTROL_NOT _ USBD: Attempted operation on
OWNED frame length control not owned by
caler
Additional software error codes added for USB 2.0 (for Windows only):
WD_USBD_STATUS NOT_SUPPORTED USBD: API not supported/
implemented
WD_USBD_STATUS INAVLID_CONFIGURATION_ | USBD: Invalid configuration
DESCRIPTOR descriptor
WD_USBD_STATUS INSUFFICIENT_RESOURCES | USBD: Insufficient resources
WD_USBD_STATUS SET_CONFIG_FAILED USBD: Set configuration failed
WD_USBD_STATUS BUFFER_TOO_SMALL USBD: Buffer too small

© 2015 Jungo Connectivity Ltd. 178 CONFIDENTIAL

Appendix B. WinDriver USB Host API Reference

Status Code Description
WD_USBD_STATUS INTERFACE_NOT_FOUND USBD: Interface not found
WD_USBD_STATUS INAVLID PIPE_FLAGS USBD: Invalid pipe flags
WD_USBD_STATUS TIMEOUT USBD: Timeout
WD_USBD_STATUS DEVICE_GONE USBD: Device gone
WD_USBD_STATUS STATUS NOT_MAPPED USBD: Status not mapped

Extended isochronous error codes returned by USBD
These errors appear in the packet status field of an isochronous transfer:

WD_USBD_STATUS ISO NOT_ACCESSED BY_HW | USBD: The controller did not
access the TD associated with this

packet
WD_USBD_STATUS ISO_TD_ERROR USBD: Controller reported an
error inthe TD
WD_USBD_STATUS ISO NA_LATE_USBPORT USBD: The packet was submitted

in time by the client but failed to
reach the miniport in time

WD_USBD_STATUS ISO NOT_ACCESSED LATE | USBD: The packet was not sent
because the client submitted it too
late to transmit

© 2015 Jungo Connectivity Ltd. 179 CONFIDENTIAL

Appendix C
Troubleshooting and Support

Please refer to the online WinDriver support page — http://www.jungo.com/st/support/windriver/
— for additional resources for developers, including

» Technical documents
 FAQs
e Samples

* Quick start guides

© 2015 Jungo Connectivity Ltd. 180 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/

Appendix D
Evaluation Version Limitations

D.1. Windows WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* DriverWizard [5]:
- Eachtime DriverWizard is activated, an Unregistered message appears.

= An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver will function for only 30 days after the original installation.

D.2. Windows CE WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.
» The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60 minutes at atime.
* DriverWizard [5] (used on a host Windows PC) —

- Eachtime DriverWizard is activated, an Unregistered message appears.

= An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

© 2015 Jungo Connectivity Ltd. 181 CONFIDENTIAL

Appendix D. Evaluation Version Limitations

D.3. Linux WinDriver Evaluation Limitations

» Each time WinDriver is activated, an Unregistered message appears.
* DriverWizard [5]:
» Each time DriverWizard is activated, an Unregistered message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver's kernel module will work for no more than 60 minutes at atime. To continue
working, the WinDriver kernel module must be reloaded (unload and load the module) using
the following commands:

; Thefollowing commands must be executed with root privileges.

To unload —
[sbi n/ nrodpr obe -r w ndrvr6

Toload —
<path to wdreg> w ndrvr6

wdreg is provided in the WinDriver/util directory.

© 2015 Jungo Connectivity Ltd. 182 CONFIDENTIAL

Appendix E
Purchasing WinDriver

Visit the WinDriver order page on our web site — http://www.jungo.com/st/order_wd/ — to
select your WinDriver product(s) and receive a quote. Then fill in the WinDriver order form —
available for download from the order page — and send it to Jungo by email or fax (see details
in the order form and in the online order page). If you have installed the evaluation version of
WinDriver, you can also find the order form in the WinDriver/docs directory, or accessit via
Start | WinDriver | Order Form on Windows.

The WinDriver license string will be emailed to you immediately.
Y our WinDriver package will be sent to you via courier or registered mail.

Feel freeto contact us with any question you may have. For full contact information, visit our
contact web page: http://www.jungo.com/st/company/contact-us/.

© 2015 Jungo Connectivity Ltd. 183 CONFIDENTIAL

http://www.jungo.com/st/order_wd/
http://www.jungo.com/st/company/contact-us/

Appendix F
Distributing Your Driver — Legal

Issues

WinDriver islicensed per-seat. The WinDriver license alows one developer on a single computer
to develop an unlimited number of device drivers, and to freely distribute the created drivers
without royalties, as outlined in the license agreement in the WinDriver/docs/wd_license.pdf
file.

© 2015 Jungo Connectivity Ltd. 184 CONFIDENTIAL

Appendix G
Additional Documentation

Updated Manuals

The most updated WinDriver user manuals can be found on Jungo's site at
http://www.jungo.com/st/support/windriver/.

Version History

If you wish to view WinDriver version history, refer to the WinDriver rel ease notes, available
online at http://www.jungo.com/st/support/windriver/wdver/. The release notes include alist of
the new features, enhancements and fixes that have been added in each WinDriver version.

Technical Documents

For additional information, refer to the WinDriver Technical Documents database:
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html.

This database includes detailed descriptions of WinDriver's features, utilities and APIs and their
correct usage, troubleshooting of common problems, useful tips and answers to frequently asked
guestions.

© 2015 Jungo Connectivity Ltd. 185 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/
http://www.jungo.com/st/support/windriver/wdver/
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	WinDriver™ USB User's Manual
	Table of Contents
	List of Figures
	Chapter 1. WinDriver Overview
	1.1. Introduction to WinDriver
	1.2. Background
	1.2.1. The Challenge
	1.2.2. The WinDriver Solution

	1.3. Conclusion
	1.4. WinDriver Benefits
	1.5. WinDriver Architecture
	1.6. What Platforms Does WinDriver Support?
	1.7. Limitations of the Different Evaluation Versions
	1.8. How Do I Develop My Driver with WinDriver?
	1.8.1. On Windows and Linux
	1.8.2. On Windows CE

	1.9. What Does the WinDriver Toolkit Include?
	1.9.1. WinDriver Modules
	1.9.2. Utilities
	1.9.3. Samples

	1.10. Can I Distribute the Driver Created with WinDriver?

	Chapter 2. Understanding Device Drivers
	2.1. Device Driver Overview
	2.2. Classification of Drivers According to Functionality
	2.2.1. Monolithic Drivers
	2.2.2. Layered Drivers
	2.2.3. Miniport Drivers

	2.3. Classification of Drivers According to Operating Systems
	2.3.1. WDM Drivers
	2.3.2. Unix Device Drivers
	2.3.3. Linux Device Drivers

	2.4. The Entry Point of the Driver
	2.5. Associating the Hardware with the Driver
	2.6. Communicating with Drivers

	Chapter 3. WinDriver USB Overview
	3.1. Introduction to USB
	3.2. WinDriver USB Benefits
	3.3. USB Components
	3.4. Data Flow in USB Devices
	3.5. USB Data Exchange
	3.6. USB Data Transfer Types
	3.6.1. Control Transfer
	3.6.2. Isochronous Transfer
	3.6.3. Interrupt Transfer
	3.6.4. Bulk Transfer

	3.7. USB Configuration
	3.8. WinDriver USB
	3.9. WinDriver USB Architecture

	Chapter 4. Installing WinDriver
	4.1. System Requirements
	4.1.1. Windows System Requirements
	4.1.2. Windows CE System Requirements
	4.1.3. Linux System Requirements

	4.2. WinDriver Installation Process
	4.2.1. Windows WinDriver Installation Instructions
	4.2.2. Windows CE WinDriver Installation Instructions
	4.2.2.1. Installing WinDriver CE when Building New CE-﻿Based Platforms
	4.2.2.2. Installing WinDriver CE when Developing Applications for Windows CE Computers
	4.2.2.3. Windows CE Installation Note

	4.2.3. Linux WinDriver Installation Instructions
	4.2.3.1. Preparing the System for Installation
	4.2.3.2. Installation
	4.2.3.3. Restricting Hardware Access on Linux

	4.3. Upgrading Your Installation
	4.4. Checking Your Installation
	4.4.1. Windows and Linux Installation Check
	4.4.2. Windows CE Installation Check

	4.5. Uninstalling WinDriver
	4.5.1. Windows WinDriver Uninstall Instructions
	4.5.2. Linux WinDriver Uninstall Instructions

	Chapter 5. Using DriverWizard
	5.1. An Overview
	5.2. DriverWizard Walkthrough
	5.2.1. Automatic Code Generation
	5.2.1.1. Generating the Code
	5.2.1.2. The Generated USB C Code

	5.2.2. Compiling the Generated Code
	5.2.2.1. Windows and Windows CE Compilation
	5.2.2.2. Linux Compilation

	Chapter 6. Developing a Driver
	6.1. Using DriverWizard to Build a Device Driver
	6.2. Writing the Device Driver Without DriverWizard
	6.2.1. Include the Required WinDriver Files
	6.2.2. Write Your Code
	6.2.3. Configure and Build Your Code

	6.3. Developing Your Driver on Windows CE Platforms

	Chapter 7. Debugging Drivers
	7.1. User-Mode Debugging
	7.2. Debug Monitor
	7.2.1. The wddebug_gui Utility
	7.2.1.1. Running wddebug_gui for a Renamed Driver

	7.2.2. The wddebug Utility
	7.2.2.1. Console-Mode wddebug Execution
	7.2.2.2. Windows CE GUI wddebug Execution

	Chapter 8. USB Transfers
	8.1. Overview
	8.2. USB Control Transfers
	8.2.1. USB Control Transfers Overview
	8.2.1.1. Control Data Exchange
	8.2.1.2. More About the Control Transfer
	8.2.1.3. The Setup Packet
	8.2.1.4. USB Setup Packet Format
	8.2.1.5. Standard Device Request Codes
	8.2.1.6. Setup Packet Example

	8.2.2. Performing Control Transfers with WinDriver
	8.2.2.1. Control Transfers with DriverWizard
	8.2.2.2. Control Transfers with WinDriver API

	8.3. Functional USB Data Transfers
	8.3.1. Functional USB Data Transfers Overview
	8.3.2. Single-Blocking Transfers
	8.3.2.1. Performing Single-Blocking Transfers with WinDriver

	8.3.3. Streaming Data Transfers
	8.3.3.1. Performing Streaming with WinDriver

	Chapter 9. Dynamically Loading Your Driver
	9.1. Why Do You Need a Dynamically Loadable Driver?
	9.2. Windows Dynamic Driver Loading
	9.2.1. The wdreg Utility
	9.2.1.1. Overview

	9.2.2. Dynamically Loading/Unloading windrvr6.sys INF Files

	9.3. Linux Dynamic Driver Loading
	9.4. Windows CE Dynamic Driver Loading

	Chapter 10. Distributing Your Driver
	10.1. Getting a Valid WinDriver License
	10.2. Windows Driver Distribution
	10.2.1. Preparing the Distribution Package
	10.2.2. Installing Your Driver on the Target Computer

	10.3. Windows CE Driver Distribution
	10.3.1. Distribution to New Windows CE Platforms
	10.3.2. Distribution to Windows CE Computers

	10.4. Linux Driver Distribution
	10.4.1. Preparing the Distribution Package
	10.4.1.1. Kernel Module Components
	10.4.1.2. User-Mode Hardware-Control Application or Shared Object

	10.4.2. Building and Installing the WinDriver Driver Modules on the Target
	10.4.3. Installing the User-Mode Hardware-Control Application or Shared Object

	Chapter 11. Driver Installation — Advanced Issues
	11.1. Windows INF Files
	11.1.1. Why Should I Create an INF File?
	11.1.2. How Do I Install an INF File When No Driver Exists?
	11.1.3. How Do I Replace an Existing Driver Using the INF File?

	11.2. Renaming the WinDriver Kernel Driver
	11.2.1. Windows Driver Renaming
	11.2.2. Linux Driver Renaming

	11.3. Windows Digital Driver Signing and Certification
	11.3.1. Overview
	11.3.1.1. Authenticode Driver Signature
	11.3.1.2. Windows Certification Program

	11.3.2. Driver Signing and Certification of WinDriver-Based Drivers
	11.3.2.1. HCK Test Notes

	11.4. Windows XP Embedded WinDriver Component

	Appendix A. 64-﻿Bit Operating Systems Support
	A.1. Supported 64-﻿Bit Architectures
	A.2. Support for 32-﻿Bit Applications on 64-﻿Bit Windows and Linux Platforms
	A.3. 64-﻿Bit and 32-﻿Bit Data Types

	Appendix B. WinDriver USB Host API Reference
	B.1. WD_DriverName
	B.2. WinDriver USB (WDU) Library Overview
	B.2.1. Calling Sequence for WinDriver USB
	B.2.2. Upgrading from the WD_xxx USB API to the WDU_xxx API

	B.3. USB User Callback Functions
	B.3.1. WDU_ATTACH_CALLBACK
	B.3.2. WDU_DETACH_CALLBACK
	B.3.3. WDU_POWER_CHANGE_CALLBACK

	B.4. USB Functions
	B.4.1. WDU_Init
	B.4.2. WDU_SetInterface
	B.4.3. WDU_GetDeviceAddr
	B.4.4. WDU_GetDeviceRegistryProperty
	B.4.5. WDU_GetDeviceInfo
	B.4.6. WDU_PutDeviceInfo
	B.4.7. WDU_Uninit
	B.4.8. Single-Blocking Transfer Functions
	B.4.8.1. WDU_Transfer
	B.4.8.2. WDU_HaltTransfer
	B.4.8.3. WDU_TransferDefaultPipe
	B.4.8.4. WDU_TransferBulk
	B.4.8.5. WDU_TransferIsoch
	B.4.8.6. WDU_TransferInterrupt

	B.4.9. Streaming Data Transfer Functions
	B.4.9.1. WDU_StreamOpen
	B.4.9.2. WDU_StreamStart
	B.4.9.3. WDU_StreamRead
	B.4.9.4. WDU_StreamWrite
	B.4.9.5. WDU_StreamFlush
	B.4.9.6. WDU_StreamGetStatus
	B.4.9.7. WDU_StreamStop
	B.4.9.8. WDU_StreamClose

	B.4.10. WDU_ResetPipe
	B.4.11. WDU_ResetDevice
	B.4.12. WDU_SelectiveSuspend
	B.4.13. WDU_Wakeup
	B.4.14. WDU_GetLangIDs
	B.4.15. WDU_GetStringDesc

	B.5. USB Data Types
	B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumeration
	B.5.2. USB Structures
	B.5.2.1. WDU_MATCH_TABLE Structure
	B.5.2.2. WDU_EVENT_TABLE Structure
	B.5.2.3. WDU_DEVICE Structure
	B.5.2.4. WDU_CONFIGURATION Structure
	B.5.2.5. WDU_INTERFACE Structure
	B.5.2.6. WDU_ALTERNATE_SETTING Structure
	B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure
	B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure
	B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure
	B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure
	B.5.2.11. WDU_PIPE_INFO Structure

	B.6. General WD_xxx Functions
	B.6.1. Calling Sequence WinDriver — General Use
	B.6.2. WD_Open()
	B.6.3. WD_Version()
	B.6.4. WD_Close()
	B.6.5. WD_Debug()
	B.6.6. WD_DebugAdd()
	B.6.7. WD_DebugDump()
	B.6.8. WD_Sleep()
	B.6.9. WD_License()

	B.7. User-Mode Utility Functions
	B.7.1. Stat2Str
	B.7.2. get_os_type
	B.7.3. ThreadStart
	B.7.4. ThreadWait
	B.7.5. OsEventCreate
	B.7.6. OsEventClose
	B.7.7. OsEventWait
	B.7.8. OsEventSignal
	B.7.9. OsEventReset
	B.7.10. OsMutexCreate
	B.7.11. OsMutexClose
	B.7.12. OsMutexLock
	B.7.13. OsMutexUnlock
	B.7.14. PrintDbgMessage
	B.7.15. WD_LogStart
	B.7.16. WD_LogStop
	B.7.17. WD_LogAdd

	B.8. WinDriver Status Codes
	B.8.1. Introduction
	B.8.2. Status Codes Returned by WinDriver
	B.8.3. Status Codes Returned by USBD

	Appendix C. Troubleshooting and Support
	Appendix D. Evaluation Version Limitations
	D.1. Windows WinDriver Evaluation Limitations
	D.2. Windows CE WinDriver Evaluation Limitations
	D.3. Linux WinDriver Evaluation Limitations

	Appendix E. Purchasing WinDriver
	Appendix F. Distributing Your Driver — Legal Issues
	Appendix G. Additional Documentation

