CCCCCCCCCCCC

WinDriver™ PCI/ISA/CardBus
User's Manual

Jungo Connectivity Ltd.

Version 11.8.0

WinDriver™ PCI/ISA/CardBus User's Manual
Copyright © 2015 Jungo Connectivity Ltd. All Rights Reserved

Information in this document is subject to change without notice. The software described in this document is furnished under alicense
agreement. The software may be used, copied or distributed only in accordance with that agreement. No part of this publication

may be reproduced, stored in aretrieval system, or transmitted in any form or any means, electronically or mechanically, including
photocopying and recording for any purpose without the written permission of Jungo Connectivity Ltd.

Brand and product names mentioned in this document are trademarks of their respective owners and are used here only for
identification purposes.

© 2015 Jungo Connectivity Ltd. ii CONFIDENTIAL

Table of Contents

L. WINDIIVEN OVEIVIEW ..ottt sttt et st et e et e e sse e sate e beeeateeaseesateesneeanseeaseesnneennnenans 1
1.1, INtroduction 0 WINDIIVEDcccuieiieeiie ettt ettt re e snee b e e sneeereas 1
D2 = T ot 1o 00 o SRR 2

1.2.1. The Chall@NGEoooeeeeiee ettt sne e 2
1.2.2. The WINDIIiver SOIULIONccoeiiiiiiiicie ettt s 2

1.3. HOW Fast Can WINDIIVEN GOcoceiiiiieiieeie et eee st se e sre et sreensesneasseeneas 3
L4, CONCIUSION ...ttt ettt e e e et e e s aa e e be e eaeeebeesaeeebeesnneenseesrnaens 3
1.5, WINDIIVEr BENEFITS ...ttt et sra e s raesneeens 4
1.6. WINDIIVEr ATChITECIUIEc.veeieeceie ettt ettt e e e sne e enre e 5
1.7. What Platforms Does WinDriver SUPPOI?coceeeeierieiieneeie e seesie e seee s sneens 6
1.8. Limitations of the Different Evaluation VErSIONScccooeeiereeneenenieseesieeee e 6
1.9. How Do | Develop My Driver With WINDIIVEI?ccoiiiiiiieniee e 7
1.9.2. On WiINAOWS @Nd LINUX ..cccueeiieeiiecieciie e eses e see st sree e s e sse e e sneesneeenneens 7
1.9.2. ONWINAOWS CE ...ttt et e re e 7
1.10. What Does the WinDriver TOolKit INCIUAE?coeriiiieiiceee e 8
1.10.1. WINDIIVEr MOUUIESveeiieciee ettt st e ere e 8
00 0 2 U 11 R 9
1.10.3. Samples and Enhanced-Support Chipset APISocveiiiiiieeeeee e 9
1.10.3.1. Enhanced ChipSet SUPPOITc.coreeiereerieeie e 10

1.11. Can | Distribute the Driver Created with WIiNDIiver?cccoovvieeienieneeneeee e 10

2. Understanding DEVICE DITVENSccueiiiiieieeie ettt sttt sttt sseeaeeneesae e snee e 11
2.1. DEVICE DIVEr OVEIVIEW ...c.eeeivieieieciieeeeeteeseeeteesteeeteesseeeteesseesseesseesnteesneesnneesseesnseans 11
2.2. Classification of Drivers According to FUNCONAlILYcoceeveeiienieniee e 11

2.2.1. MONOITNIC DIIVELS ..ottt ettt 11
2.2.2. LAYEIEA DIIVELS ...ttt sttt et s neesteeneesneenneas 12
2.2.3. MINIPOIt DIIVENS ...ttt st sttt e e nneeneas 13
2.3. Classification of Drivers According to Operating SyStemsccceevveereeieneeseenenn 14
2.3. 1. WDM DIIVELS ..ottt ettt ettt saa e et s e e nae e s e e reesnneeneeaneas 14
2.3.2. UNIX DEVICE DIIVEIS ..ottt ettt et st e 15
2.3.3. LINUX DEVICE DIIVELS ...oooeei ettt ettt st et sre e e nnee s 15
2.4. The Entry PoINt Of the DIIVESccuoiiiieeeeeree e s s 15
2.5. Associating the Hardware With the DIIVENc.coeoiiiiiiieeeeeee e 16
2.6. Communicating With DITVEX'Scceiiiiiiieeee e 16

3. INSEAIIING WINDIIVED ...ttt b et e e e sseeseeneesreeeeenee e 17

3.1, SySteM REQUITEMENLSc..eeiiiiieieeiie e siee e see et e sttt e aeeee e e sbeeeesneesaeeeesnensneenes 17
3.1.1. Windows System REQUITEMENLScccoeereerrriereerieeeesieeee e see e 17
3.1.2. Windows CE System ReQUITEMENLScccooereereriieriereeee e sieeee e eee e e 18
3.1.3. Linux System REQUITEMENEScoiuiiiiriieie et 19

3.2. WInDriver INStallation PrOCESScccuieiiieriiiieneerie ettt s neas 19
3.2.1. Windows WinDriver Installation INStruCtionscccceveerenieneenesie e 19
3.2.2. Windows CE WinDriver Instalation INStructionsccccoeoeeveeieneeneseeneenn. 20

3.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms......... 20

3.2.2.2. Installing WinDriver CE when Developing Applications for Windows

CE COMPULELS ...ttt be et ae e st e e sae e e e e e sae e sseeesaeesnneenneas 22

3.2.2.3. Windows CE Installation NOLEccceeoiieiiiiiiiiieeeeeseee e 23
3.2.3. Linux WinDriver Installation INStrUCtIONSccceeiirinieieeieree e 23

© 2015 Jungo Connectivity Ltd. iii CONFIDENTIAL

Table of Contents

3.2.3.1. Preparing the System for Installationcccceeeveeieicevecse e, 23

3.2.3.2. INSEAIALTION ...t 24

3.2.3.3. Restricting Hardware ACCess 0N LiNUXcccccceeveeveniieieese e e seeee s 26

3.3. Upgrading Your INSAlationccceoeeieiieiieie ettt ne s 26

3.4. Checking Your INStallaionccccceeiieeiiese e s 27
3.4.1. Windows and Linux Installation Checkc.cccceveiinininiiinineeeenien 27

3.4.2. Windows CE Installation Check ..o 27

3.5. UNINStalling WINDIIVESc.coiieieiie ettt ae e naesne e e 27
3.5.1. Windows WinDriver Uninstall INStructionsccocevenenenenienenienesenie s 27

3.5.2. Linux WinDriver Uninstall INSIrUCLIONSccooeiiiininineneneseeeeeee e 30

4. USING DIVEIWIZAN ..ottt st ae e te et e ene e aeenseeneensennee e 31
A1, AN OVEIVIBIW .ottt sttt st bbb sttt e e et e be s b e s bt eb e s bt e st e e e beneenbentens 31

4.2. DriverWizard WalKthroughccooeiioiiei et 32
4.2.1. AutomatiC Code GENEIaiONcceerieirrierie e 39

4.2.1.1. Generating the COUEccceveeiieieceesece e 39

4.2.1.2. The Generated PCI/PCMCIA/ISA C COEcoevrvreeririinienienerienesiene 39

4.2.2. Compiling the Generated COUEcccceevieieeieeriece e 40

4.2.2.1. Windows and Windows CE Compilationccceecerveeveeiesieeseesiesenes 40

4.2.2.2. LINUX COMPIBLION ...ooceeeiieiece et 41

L B L= 7= Lo o] oo = T D 1= S 42
5.1. Using DriverWizard to Build a DeVviCe DIIVESc.ccceevveeiieeeceesecse e 42

5.2. Writing the Device Driver Without DriverWizardcccoceveeieieveesesceeseesie e 43
5.2.1. Include the Required WinDriver Fil€Scoeoviieieeie e 43

5.2.2. WITE YOUI COURcoueiieiiiiesie sttt sttt st 44

5.2.3. Configure and Build YOUr COOEccceeceeviieiiriesece e 45

5.3. Developing Your Driver on Windows CE Platformscccccevvevevievecce e, 46

(OB o UTo o[1 o D AV = £ S 47
6.1. User-Mode DEDUGGINGocveieiieiieieeeseese ettt s re e ne s 47

(T2 B T o 0o TN 1Y/ o g (o | S 47
6.2.1. The wddebug gui ULHHILYcceeeeiiee e 48

6.2.1.1. Running wddebug_gui for a Renamed Driverccccccoccvvieevveceeveenieenen. 50

6.2.2. The wddebug ULIHILYccoieeiiieciece et 50

6.2.2.1. Console-Mode wddebug EXECULIONccccceevveeevieeie e 50

6.2.2.2. Windows CE GUI wddebug EXECULIONccceeveerieeseeie e e 54

7. Enhanced Support for Specific ChIPSELSccveveceeie e 55
7.0 OVEIVIBIW .ottt sttt b et b e bt e et et e st e s be e b e s bt e st e e e e e eenbenbe s 55

7.2. Developing a Driver Using the Enhanced Chipset SUPPOrtcccoveceveeveeceesecriecene 55

G T o O I o] (== TSR 57
8.1. PCl EXPreSS OVEIVIEWccueeiieeieeiiesiecieseesteeteseesteeaessaesseeaasseessesnaesseesseensasseessesnessnes 57

8.2. WINDIIVer fOr PCl EXPIrESSooiieiiicieiieieeeseesteee et te e sae e ese e ne e sneenns 58

O. AGVANCEN ISSUESoouiiiiiieieiesie sttt st sttt e et bbbt bt st e e et e be st e sbe et e e neenes 59
9.1. Performing Direct Memory ACCESS (DMA)ooiieeieeceee e 59
9.1.1. Implementing Scatter/Gather DMAooveiiieceece e 60

9.1.2. Implementing Contiguous-Buffer DMA ..o 62

9.1.2.1. Preallocating Contiguous DMA Buffers on Windowscccccceeveneee. 64

9.2, HaNdliNg INTEITUPLSveieeeieieie ettt st s ne et e sneenreennennnens 66
9.2.1. Interrupt Handling — OVEIVIEWccccveiieiieiieie e 66

9.2.2. WinDriver Interrupt Handling SEQUENCEcceeceveeiieeceereee e 68

© 2015 Jungo Connectivity Ltd. iv CONFIDENTIAL

Table of Contents

9.2.3. Registering IRQs for Non-Plug-and-Play Hardware on Windows 7 and

[1o T 69
9.2.4. Determining the Interrupt Types Supported by the Hardwarecccccccueu.e... 70
9.2.5. Determining the Interrupt Type Enabled for aPCl Cardcccceevevvvveiieenee 71
9.2.6. Setting Up Kernel-Mode Interrupt Transfer Commandscccceeveceeveeneennnnne. 71
9.2.6.1. Interrupt Mask CommMaNGScceevereeieeieeeeseese e 72

9.2.6.2. Sample WinDriver Transfer Commands Codeccceeevveevveieccieseenens 73

9.2.7. WinDriver MSI/MSI-X Interrupt Handlingccccoceveeieeceiieie e 74
9.2.7.1. Windows MSI/MSI-X Device INF FIlESccocoivininiinieenese s 74

9.2.8. Sample User-Mode WinDriver Interrupt Handling Codeccoeeeveevivcvecnnene 75
9.2.9. Interrupts 0N WINAOWS CEcccoeiieiicieseese st see et sne e 77
9.2.9.1. Improving Interrupt Latency on Windows CEcccocevevceeneeviecneenne. 78

LS G T Y (=@ (0 (= o S 79
9.3.1. Introduction t0 ENAIANNESScccooiiiiininineiesie e e 79
9.3.2. WinDriver Byte Ordering MaCIOSc.ccoveveeeeieerieeieseesieseesteesse e sseessesneensens 79
9.3.3. Macros for PCl Target ACCESSccvccveieerieeiesiesieseesieesteseesseessesseesseesesneessesnes 80
9.3.4. Macros fOr PCl MaSter ACCESScceeirierierieriisiesiesiesesesee e st see s sne s 81

10. IMProving PErfOrMENCEccoiieiice ettt et aeesaeeeeenaesreenneeneens 82
LO. 1. OVEIVIBIW .ttt sttt b et bbbt bt e st et e b et e bene e st e et e e st e ne e e enes 82
10.1.1. Performance Improvement CheCKIistcoevveieiiesicieseese e 83
10.2. Improving the Performance of a User-Mode DIIVErcccoveceiievieeceeseese e 84
10.2.1. Using Direct Access to Memory-Mapped RegIiONScccevveveeveesieeiieseennns 84
10.2.2. Block Transfers and Grouping Multiple Transferscccoovvvviiveviviceseeviennnns 85
10.2.3. Performing 64-Bit Data Transferscccvvceieeiecie e 85

11. Understanding the Kernel PIUGINooe i 87
00 T 7= o (o (0T o SO 87
11.2. Do | Need to Write a Kernel Plugin DIIVEr?ccooeeieieceee e 87
11.3. What Kind of Performance Can | EXPECL?ccoveeeieeiece e 88
11.4. Overview of the DevelOpmENt PrOCESSccvevvciee i 88
11.5. The Kernel Plugin ArChiteCIUIEcc.oieeiieeieceese et 88
11.5.1. ArChiteCtUre OVEIVIEWcoouiiiiiiiiiesiisiesieeee ettt s 88
11.5.2. WinDriver's Kernel and Kernel Plugin Interactioncccccevevveveveenieennene 89
11.5.3. Kernel Plugin COMPONENEScccocieiieiieieesieeie et eeestee e sae e ste e sneesne e 90
11.5.4. Kernel Plugin EVENt SEQUENCEccoieeiecie ettt 90
11.5.4.1. Opening a Handle from the User Mode to aKernel Plugin Driver 90

11.5.4.2. Handling User-Mode Requests from the Kernel Plugin 91

11.5.4.3. Interrupt Handling — Enable/Disable and

High Interrupt Request Level ProCeSSINGccccceeveeieeieesieeieseesieeeesieesne s 92

11.5.4.4. Interrupt Handling — Deferred Procedure Callscccooveveeeciecnenee. 93

11.5.4.5. Plug-and-Play and Power Management EVentscccccccveceevecciesnenne, 9

11.6. How Does Kernel Plugin WOTK?ccveiiiieiice et 94
11.6.1. Minima Requirements for Creating a Kernel Plugin Drivercccccccvveenen. 9
11.6.2. Kernel Plugin Implementationccceeceeeereeieseese e s e eee e ese e e 95
11.6.2.1. BEfOre YOU BEJINocieieeeciece ettt 95

11.6.2.2. Write Your KP_INit FUNCLIONcccoiieiiinieseece e 95

11.6.2.3. Write Your KP_Open FUNCLION(S) ...ccceevvereerieeieseesieeee et eeeseesreeeens 97

11.6.2.4. Write the Remaining Plugln Callbacksccccccevevieieeiviie e 102

11.6.3. Sample/Generated Kernel Plugln Driver Code OVErVIiewcccceveevieennnns 102

© 2015 Jungo Connectivity Ltd. \Y CONFIDENTIAL

Table of Contents

11.6.4. Kernel Plugln Sample/Generated Code Directory Structureccccceevveeneee 103
11.6.4.1. pci_diag and kp_pci Sample DIreCtoriescoeeeveeveeieseeseeiee s 103
11.6.4.2. The Generated DriverWizard Kernel Plugin Directoryccccoc...... 105
11.6.5. Handling Interrupts in the Kernel Plugin ..o 107
11.6.5.1. Interrupt Handling in the User Mode (Without the Kernel Plugin) 107
11.6.5.2. Interrupt Handling in the Kernel (Using the Kernel Plugin) 108
11.6.6. MESSAPE PASSING ...ccveiveeirieieiiesieeiiesee e eseesseestesseesseesseesesseesteensesneesneensesneenes 110
12. Creating a Kernel PIUGIN DIIVELc..ooiiiieece ettt 112
12.1. Determine Whether a Kernel PluginisNeeded ... 112
12.2. Prepare the User-Mode SOUrce COOEecuveeevieeieiieriecee et 112
12.3. Create a New Kernel Plugin PrOJECEcuviieiice e 113
12.4. Open a Handle to the Kernel PIuginccooiiieie e 114
12.5. Set Interrupt Handling in the Kernel Plugincoooeiieiecce e 115
12.6. Set 1/0 Handling in the Kernel PIugincoooveii e 116
12.7. Compile Your Kernel PIugin DIIVEScoooiiieciee et 116
12.7.1. Windows Kernel Plugln Driver Compilationcccceeevveeveeieeseesescee s 116
12.7.2. Linux Kernel Plugin Driver Compilationccccceeveieeieiiesiere e 120
12.8. Install Your Kernel PIugin DIIVENcooooiiieiiee e 121
12.8.1. Windows Kernel Pluglin Driver Installationccccccevieieiceenieie e 121
12.8.2. Linux Kernel Plugin Driver Installationcccocevevieieieeseece e 122
13. Dynamically Loading Y OUr DIIVEScoceiieiieecieie ettt 123
13.1. Why Do You Need a Dynamically Loadable Driver?cccccovveeveeieseenecieeseene 123
13.2. Windows Dynamic Driver LOAdiNgccccveereeieeieesienieseesie e seesee e sseesse e sneenes 123
13.2.1. The WAreg ULHILY ...cc.eceeeeeeee et 123
13.2.1.1. WDM DIIVENS .ottt st nne s 124
13.2.1.2. NON-WDM DIIVENS ...ouiitiriiniiriieieiee ettt s 125
13.2.2. Dynamically Loading/Unloading windrvr6.sys INF Filescccceveevieenennee. 127
13.2.3. Dynamically Loading/Unloading Y our Kernel Plugin Drivercccce....... 127
13.3. Linux Dynamic Driver LOBAINGcccoviieieeiecie e ese e 128
13.3.1. Dynamically Loading/Unloading Y our Kernel Plugin Driverccce....... 128
13.4. Windows CE DynamicC Driver LOadingccccovevuereerieniiesieseeeeseesie e sseesseseesnens 129
14. DistribDULING YOUE DIIVENcoiiieieceecieese ettt st be et sraesne e e e neeneeeneenns 130
14.1. Getting a Valid WINDIVEr LICENSE ...cc.ocveieeiiecieseeie ettt 130
14.2. Windows Driver DIStriDULIONccoooiiiiniiiiceee s 130
14.2.1. Preparing the Distribution PaCkagecccceveeieneseece e 131
14.2.2. Installing Y our Driver on the Target COMPULEcccoeceeeerieecieseese e 131
14.2.3. Installing Y our Kernel Plugln on the Target COMpPULErcccoveevieeeenveenee. 134
14.3. Windows CE Driver DiStriDULIONccoiiiiiriieiieiesesiese e 135
14.3.1. Distribution to New Windows CE PlatfOrmsccoocoererininnenenene e 135
14.3.2. Distribution to Windows CE COMPULEN'Sccccereereeieeseesieseesreessesseesseesees 136
14.4. Linux Driver DIStrDULIONcccooiiiiiiininieiee s s 137
14.4.1. Preparing the Distribution Packagecccceveeieiieseeie e 137
14.4.1.1. Kernel Module COMPONENLScccueiieiieiiesieeieseesreesee e see e 137
14.4.1.2. User-Mode Hardware-Control Application or Shared Object 140
14.4.2. Building and Installing the WinDriver Driver Module on the Target 140
14.4.3. Building and Installing Y our Kernel Plugin Driver on the Target 142
14.4.4. Installing the User-Mode Hardware-Control Application or
Shared ODJECLc.ooieee e nnn 143

© 2015 Jungo Connectivity Ltd. Vi CONFIDENTIAL

Table of Contents

15. Driver Installation — AOVANCE ISSUESc.coeiiriirinirinieie et sse e 144
15.1. WINAOWS INF FIIES ..ottt s 144
15.1.1. Why Should | Create an INF FIl€?ccooeeiieieeecee e 144
15.1.2. How Do | Install an INF File When NoO Driver EXiStS?cccccovvvevincnennenn 145
15.1.3. How Do | Replace an Existing Driver Using the INF File? ... 145
15.2. Renaming the WinDriver Kernel DIIVEScccooveieieereee e 146
15.2.1. WIindows Driver RENAMINGccccccvieeriieieieeseesieeieeseeste e sse e sseensesnee s 147
15.2.2. LinuxX Driver RENAMINGcccccveiieieiiesieeie e see e see et sne e sneeneas 149
15.3. Windows Digital Driver Signing and Certificationcccccocvvveeneecesiesesceseennn 150
15.3. 1. OVEIVIBIW vttt sttt bbbt ettt e b 150
15.3.1.1. Authenticode Driver SIgNaLUrecceoeeveeeeeseerieseeseesee e see e 151

15.3.1.2. Windows Certification Programccceceeveeveiieesecsesiee e 151

15.3.2. Driver Signing and Certification of WinDriver-Based Drivers...........cc........ 152
15.3.2.1. HCK TSt NOLES ...cuecviieieieie ettt 153

15.4. Windows XP Embedded WinDriver COMPONENLcccceeveeieeneesieseeseesee e sseeneas 154
A. 64-Bit Operating SySteMS SUPPOITeecueeiieiieieeiie e ee e e et sreesae e e sneeeeenee e 156
A.1. Supported 64-Bit ArchiteCtUIESccceiieiiee e 156
A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms............... 156
A.3. 64-Bit and 32-Bit Dala TYPESccveieerieeieseeste e te st ae et sre e 158
B. APl REFEIEINCE ...ttt bbbttt ettt bbb b nes 159
B.1. WD _DIIVEINGIMEcceoeieieiece sttt e et te e sreetesneesneeneeneesneenes 159
B.2. WDC Library OVEIVIEWcc.ccceeiieieiieiteeiiesie e esie s steesaesseesseesesreesseensesneesseensesneenns 160
B.3. WDC High-LEVE APl ...ttt sttt 161
B.3.1. Structures, Types and General Definitionscccccceveeveccevecse e 161
B.3.1.1. WDC_DEVICE_HANDLEcceoetiteieeeee s 161

B.3.1.2. WDC_DRV_OPEN_OPTIONS DEfinitionsccoeevvereivrenieenenene 161

B.3.1.3. WDC_DIRECTION ENUMEXationccocevrueererierieesesiseseseeseeseeeens 162

B.3.1.4. WDC_ADDR_MODE ENUMErationccccevrereeerenieeneseneeeseesinnens 163

B.3.1.5. WDC_ADDR_RW_OPTIONS ENUMErationcccceevrvrereeerenneeennen, 163

B.3.1.6. WDC_ADDR_SIZE DEfiNitioNScccovvvriereriniinieinesesese e 164

B.3.1.7. WDC_SLEEP_OPTIONS DEfinitionsccceevrereienernneeeseseeseseenes 164

B.3.1.8. WDC_DBG_OPTIONS DEfiNItioNScccooeeeererieinesieneeeseseesennenenns 164

B.3.1.9. WDC_SLOT _U UNION ..oiviieiiiiiieinesieeeiesie e 166

B.3.1.10. WDC_PCI_SCAN_RESULT StIUCLUIEcceevrreerrenierieenieseeeeeseens 166

B.3.1.11. WDC_PCMCIA_SCAN_RESULT StrUCIUrecceovrereererieeeenenes 167

B.3.1.12. WDC_PCI_SCAN_CAPS RESULT Structurec.ccecereevrreruerennen. 167

B.3.2. WDC _DriVEIrOPEN() ..veeveeeeiieeiieeeestiesieeeesteesseseesseessessaesseesesseesseensssssessesnsenns 168
B.3.3. WDC_DFIVEICIOSE() .eeveevereeerresiesieisiesieessesiesessessessesessessesessessessesessessssessessenens 169
B.3.4. WDC_PCiSCAaNDEVICEI() ...veveevereererreriirieeniesiesiesestesiesessessesseessessesessessessenessesss 169
B.3.5. WDC_PciScanDevicesByTopology() «...cccveeeerrerreereeresieeseesieseeseessesseesseeneens 170
B.3.6. WDC_PciScanRegi SteredDeVICOI()vervrverieerrerierieesiesiesensesseseesessessesesessesens 172
B.3.7. WDC_PcmCiaSCanDEVICES()eeveerrrrerieerieeeesieesteseesseessesseesseeeesseessesnsssneesses 173
B.3.8. WDC_PCiSCANCEPS() -.ververeererrereereriniesieensesiesessessessesessessessssessessesessessessesessenes 174
B.3.9. WDC_PCiSCAaNEXICAPRS() .vevvevereererrerirrieeriesieseesessessesesseseesessessessesessessesessessensens 175
B.3.10. WDC_PCiGEtDEVICEINTO() ..cvvrvereererririeiieisiesieisresieseeesie e se s e esse e 176
B.3.11. WDC_PcmciaGetDeviCelNfO() ..ovevveeeeieeie e 177
B.3.12. WDC_PCIDEVICEOPEN() vevereererieeeririisieieiesieseeestesaesesseseeseesessesessessessensesessens 178
B.3.13. WDC_PcmCiaDeVIiCEOPEN() ..eevvereeireeieeeesteerteeeesreesseseesreenseseesseessssnessneenes 181

© 2015 Jungo Connectivity Ltd. vii CONFIDENTIAL

Table of Contents

B.3.14. WDC_ISBDEVICEOPEN() .eververerrerreriereriesieensesseseesessesseessessesessessessesessessenessesses 184
B.3.15. WDC_PCIDEVICECIOSE() ..eovvivirerneeririenieiiniesieinresieseesessessesessessessesessessesensessesens 188
B.3.16. WDC_PCcmCiaDEVICECIOSE() .uvvreeririereererienieieesiesieestessenesseseesseessessesessessesens 189
B.3.17. WDC_ISADEVICECIOSE() ..evererrereeeeririesieesrisieseesessesieessesseseesessessesessessensssessens 190
B.3.18. WDC_CardCleanupSEtupP()eecveereerreeruereesreeieeseessesseesseessessesseessessessseensens 191
B.3.19. WDC_KernelPlugINOPEN() ...coveeeeeeieiece e eee ettt 192
B.3.20. WDC_CalKEPIUG() «vvereererrerieeeirierieisiesieesesieseeesieseesesse e seesessessesessessenenns 193
B.3.21. WDC_ReaAMEMXXX() wervererrerreerisiesieissesiesesessessesessessesessessesessesssssenensessenes 194
B.3.22. WDC_WrItEMEMXXX() veeeerreieesienieisiesieeseseeseeessesseessessesessessesessessesennens 195
SRCHZZCIRVIYI D IO 23570 FNo [0 |9 0,0, { | T 196
B.3.24. WDC_WriteAdArXXX() «veeeeereereeerenieeniesieseeresieseeessessesessesseseesessessesessessenes 197
B.3.25. WDC_ReadAddrBIOCK() ...eveereereeiriirieieesiesieesie e seens 198
B.3.26. WDC_WTriteAddrBIOCK()coveveererieieiisiinieisisieeee st 199
B.3.27. WDC_MUIITraNSFEr() vooeeeeereisieisiesieisesie e 200
B.3.28. WDC_AddrSpacel SACHVE() ...ceeverereeeriirieiniesieneeesiesiesesesieseesesseseesessesseseens 201
B.3.29. WDC_PCiReadCIGBYSIO() ..eoveeererierieiriirieieesiesienesiesie s sens 202
B.3.30. WDC_PCIWtECIOBYSIOL() ..voveververeeerieiierieisese s 203
B.3.31. WDC _PCIREAACTIY() vvoveveererrerieiniiiieieisiesieese et sse e 204
B.3.32. WDC_PCIWFILECIG() +.veververeeerrerierinisiesieesesiesessesiesaeses e essestessesessesaenessesens 205
B.3.33. WDC_PciReadCfgBYSIOtX XX () wovvererereereriereeenresiesesesiesessesieseeessessesessessenes 206
B.3.34. WDC_PciWriteCfgBYSIOEX X X() vevvererreririririenieesiesieresesie s seenas 207
[SRCHCISRVIY D IO = o] 275=o (04 {0)0, . IR 209
B.3.36. WDC_PCIWHLECTGXXX() vererrerreeririenieisesieesesiesieessessesessesseseesesseseeessesens 210
B.3.37. WDC_PcmciaReadAttribSPace()ccooeerereerineiene e 211
B.3.38. WDC_PcmciaWriteAttribSPace()ccvveereerieeieeieeie s esieseeseesie e enee s 212
B.3.39. WDC_PcmCiaSEtWiNdOW() ...cceeveerrerieeniriereeisesiesesesseseseseseeessesaesessessesens 212
B.3.40. WDC_PCMCIASEVPP() +ervereerereerereririeenestessesessessesessessessesessessessesessessenessesses 213
B.3.41. WDC_DMACONtIGBUFLOCK() ..vvoveveeeriirieieirie e 214
B.3.42. WDC_DMASGBUFLOCK() +.veveerereeerresiereeestesieesseseesesessessesessessesessesseseesessesens 216
B.3.43. WDC_DMABUfUNIOCK() .veveeeereeeeiiriinieesiesieseeesieseeesseseses e seeseesesseseesessessens 218
B.3.44. WDC_DMASYNCCPU() eevereerereirieerrisieseeesieseesessessesessessesessessessssessessessssessenes 219
B.3.45. WDC_DMASYNCIO() wverveeerenierieieisieniesessessesessesseseeessessesessessessessssessesessessens 220
B.3.46. WDC_SharedBUFfErATTOC()evvereeeeeieeie et 221
B.3.47. WDC_SharedBUFfEIFTEE()cccvveeriiieeire et 222
B.3.48. WDC _INENGDIE() ..oveveeieeieieiee et 223
B.3.49. WDC _INtDISADIE() ..oveeeieiiiieeieii ettt 227
B.3.50. WDC_INtISENGDIEA() ..oveiveeeierieiieieiesieeeee st 228
B.3.51. WDC_EVENtREGISLEN() .oveeeverierieieiirieieiesiesieesiesiesesie st see e see e s saeessessens 229
B.3.52. WDC _EVENtUNIEQISEN() ..veevveeeeereeie e sieesieeee st estesee st sae e sre e e see s enne e 231
B.3.53. WDC_EVentISREGISIErEU()evvererrerieieiiierieisesie e 232
B.3.54. WDC_SetDebugOPLIONS() ...cccvereeiieeieiieiieeieeseesteeieseesteeeesree e eeessee e eneesnes 232
B.3.55. WDC _EIT() weetereeeririisieisiesiesiees e sieseste s e see e sse et eesestesaesessessenensesens 233
B.3.56. WDC_TIACE() «.eeververeeerrerieierestesiesestessesessessesessessessssessessensesessessessssessessesessenss 234
B.3.57. WDC_GEtWDHANAIE() ...eoveuiieiieeieiiiieeese et 235
B.3.58. WDC_GEtDEVCONEXL() .evereerereeeeririisieeeesieseesesiesiesesseseeseeessesessessessessesessens 235
B.3.59. WDC_GEBUSTYPE() .eeververeererrerieieiiniesieesieseesessesseseesessesseessessessesessessesessesens 236
B.3.60. WDC_SIEEP() +euvererrerreerrertereeensesiesessesseseesessessesessessesessessessssessessesessessensesessenes 237
B.3.61. WDC _VEISION() wiuvererrerieerreriesiesisiesieseesessessesessesseseesessesseessessessesessessessesesseses 237

© 2015 Jungo Connectivity Ltd. viii CONFIDENTIAL

Table of Contents

B.4. WDC LOW-LEVE AP ..ottt 238
B.4.1. WDC_ID_U UNION ..ottt st 238
B.4.2. WDC_ADDR_DESC SITUCLUEcoueeuiiieieiisie sttt 239
B.4.3. WDC_DEVICE SITUCIUIEocueiiiiiiiiesiesiesieseeee et 239
B.4.4. PWDC _DEVICE ...c.oooiiieee ettt st e 241
B.4.5. WDC_MEM_DIRECT_ADDR MBECIOceveiiiiiieniisieniesineenee e 241
B.4.6. WDC_ADDR_IS MEM MBECIO ...ccoiviriiriieieieienie et 242
B.4.7. WDC_GET_ADDR_DESC MBECIOceoveiiiiriiniisiesiesesiesesee e 243
B.4.8. WDC_GET_ENABLED _INT_TYPE MB&CIO ...ccoovviriirienierinieiesie e 243
B.4.9. WDC_GET_INT_OPTIONS MACIO ...ccevueruirieiiiienienie e 244
B.4.10. WDC_INT_IS MSI MACIO ...eovuiriiriieieieniesiesie sttt 245
B.4.11. WDC_GET_ENABLED_INT_LAST_MSG MaCIOcceecvreririerieniererennenn, 246
B.4.12. WDC IS KP MBECIO ...oouiiuiiieiesiesie ettt 247

B.5. WD_xxx Structures, Types and General Definitionscccecvveevecceseeneccee s, 247
B.5.1. WD_BUS TYPE ENUMEIELiONcccovuiriiriirieiesiesesie e s 247
B.5.2. ITEM_TYPE ENUMEELIONccueeieieeitieie ettt se et 248
B.5.3. WD_PCMCIA_ACC_SPEED EnuMErationcccoeererererieennnesesiesesennens 248
B.5.4. WD_PCMCIA_ACC_WIDTH EnumMErationccceeererenieenienenesesesesennes 248
B.5.5. WD_PCMCIA_VPP ENUMEIELIONccerueriirieieiesiesie s 248
B.5.6. WD _PCI_ID SITUCLUIEoeviiiiieiiie ettt sttt 249
B.5.7. WD_PCMCIA_ID SIUCIUIEcoviieriisiisiesiesiesieie e 249
B.5.8. WD_PCI_SLOT SIUCIUIEooiiiiiiieiiie ettt 249
B.5.9. WD_PCMCIA_SLOT SITUCLUIE ...c.eerueenieieiesiesie et 249
B.5.10. WD _PCI_CAP SITUCIUIEcooiiieiiiieciiie sttt s 249
B.5.11. WD _ITEMS SITUCIUIEeeeiiiiieecee ettt 250
B.5.12. WD_CARD SITUCLUIEoooiiiieiiie ettt 256
B.5.13. WD_PCI_CARD _INFO SITUCIUIEceoeriiriiriirieiesiesie s 256
B.5.14. WD_PCMCIA_CARD_INFO StIUCIUIEccourieeierieriesiesienieseseeseesee e e 257
B.5.15. WD _DMA SITUCIUIEooiiiii ittt s snee e 258
B.5.16. WD_TRANSFER SITUCLUIEooueiiiiiiiisie ettt s 261

B.6. Kernel Plugin Kernel-Mode FUNCLIONSccooieiiciece e 262
= 3 S I S 1 0 ST 263
R I (e O o= o ST 264
B.6.3. KP_CIOSE ..ottt ettt st 267
B.6.4. KP_Call ..o e 268
B.6.5. KP_EVENL ...ttt b 270
B.6.6. KP_INtENGDIEccuiiviiiciieieee e s 271
B.6.7. KP_INDISADIEoeiiviiiiiiieeee et 273
B.6.8. KP_INLALITGl ..ottt 274
B.6.9. KP_INTATIDPC ..eouiiiiiiisiesiesiesieeiee ettt sttt nrenre s 276
B.6.10. KP_INTATIFGIMSI ...t 277
B.6.11. KP_INATDPCMSI ..ot 279
B.6.12. COPY_TO_USER_OR_KERNEL,

COPY_FROM_USER_OR_KERNELccctiiiiiirieieiesie e 281
B.6.13. Kernel Plugin Synchronization APISccccccevieieeie e 281
B.6.13.1. Kernel Plugln Synchronization TYPEScccccceveevvecieseereseeseeseeeneas 282
B.6.13.2. Kp_SPINlOCK _INIt() .ooveeeeeeeeiecieseee e 282
B.6.13.3. Kp_SPINIOCK WaIT() .eoveeeeeveeieiie et 283

© 2015 Jungo Connectivity Ltd. ¢ CONFIDENTIAL

Table of Contents

B.6.13.4. Kp_sSpinlock rel@ase()ccoceveereeiesiese et 284

B.6.13.5. Kp_spinlock _UNiNIt() ...ccoveeeieeiecieseee e 285

B.6.13.6. kp_interlocked init()cccooeevieereeieieesece e 286

B.6.13.7. kp_interlocked _uninit()cccooveeeieeneiie e 287

B.6.13.8. kp_interlocked inCrement()cccceeeeieeiecieese e 288

B.6.13.9. kp_interlocked decrement()cccoceeveeeereere s 289

B.6.13.10. kp_interlocked add()cccoererierieeieseere e 290

B.6.13.11. kp_interlocked read()cccceveerieeieieesieie e 291

B.6.13.12. kp_interlocked SE() ...ccovieeieciesiere e 292

B.6.13.13. kp_interlocked _exchange()cccvveeveeieeeese e 293

B.7. Kernel Plugin Structure REFEIENCEcccveivveeiieee e 293
B.7.1. WD_KERNEL_PLUGINocciiiiiiiiieieiesiesie st 294

B.7.2. WD_INTERRUPT ..ottt s 295

B.7.3. WD_KERNEL_PLUGIN_CALL .ottt 296

BL7. 4, KP_INIT ettt bbbttt b b e nne e 297

B.7.5. KP_OPEN_CALL .ottt st 297

B.8. User-Mode Utility FUNCLIONSccceiieiece et 299
BL8.1. SEAE2SII ..eiviiiieiieieie ettt bbbt e e nre s 300

B.8.2. GBI 0S LY ettt b 300

B.8.3. THIrEaUSIAITceeiiieiceeeee e s re s 301

B.8.4. TRreadWAaTccviieiiieeeee e e 302

B.8.5. OSEVENICIEALEooiieiiiiii ittt n 303

B.8.6. OSEVENICIOSEooieeeiicie ettt ettt nne s 304

B.8.7. OSEVENIWAILcceevviiiieiieieiesie ettt sttt s 305

B.8.8. OSEVENISIGNEcceeieeeceee e e 306

B.8.9. OSEVENTRESELooveiiiiiieiieieie ettt sre s 307

B.8.10. OSMULEXCIEALEccuveiiieiiieriieeesiieeesiiesssiteeesite e siae e sbee s s s e sbe s sne e s e e nsnee e nanes 308

B.8.11. OSMULEXCIOSEcveeuieiieesieeieciesteeste st e steeae e ste e e e ae e e e steeneesneesneennesreenes 309

B.8.12. OSMULEXLOCKveiveeiicieciee sttt ettt st esne e 310

B.8.13. OSMULEXUNIOCKccvieeiiiiiesiieiesiesie ettt esreennesneesne e e 311

B.8.14. PrintDDGMESSA0Eecuveiieeieiiesieeite ettt sttt ae et sne et sreene e 312

B.8.15. WD _LOGSIAooveiviiririieiieieiee ettt sttt 313

B.8.16. WD _LOGSIOP ..veveiviriieieieniesie sttt st sttt st 314

B.8.17. WD _LOGATD ..ottt ettt sttt 314

B.9. WINDriver StatUS COUESc.ccveiuieieiieiieesie e ee et sae e te e s e e e snaesreeneesnee s 315
23 I I 111 L1 o 1o USSR 315

B.9.2. Status Codes Returned by WINDIIVEScccoovieiiiie e 315

C. Troubleshooting and SUPPOITccveieiieiierieeiee e ese e eee e sreete e e e ee e e sseeeeenaesreeneeens 317
D. Evaluation Version LIMItalioNScccveeieiieseeiieseeseesie et e e seesseesse e s esseseesneenseennens 318
D.1. Windows WinDriver Evaluation Limitationsccccceeeeevieiesieesieese e see s 318

D.2. Windows CE WinDriver Evaluation Limitationscccceeeeveeveeiesieesesieeceeseeeens 318

D.3. Linux WinDriver Evaluation Limitationsccccevveieiieenecse e 319

E. PUrChasing WINDIIVEDccooiiiieiecie ettt ee sttt te s e s aessa e s reenesneesreeseaneens 320
F. Distributing Your Driver — Legal ISSUESccccceeiieiiiiieciesie et see st ee e sse e sneennenn 321
G. Additional DOCUMENLALIONccveiieeieiieseee et ete e e e s sre e reesae e e sreesseeseesseenesneenes 322

© 2015 Jungo Connectivity Ltd. X CONFIDENTIAL

List of Figures

1.1, WINDIIVEr ATChITECIUIEoueeieei ettt et ne e 5
2.1, MONOITNIC DIIVEFS ...ttt sttt et eemeesbe e teeneesseeseeneesreeseenee e 12
2.2, LAYEIEA DIIVELS ..ottt sttt e st ee st e sbe e s e e st e s seeseeneesreenaeeneesneensens 13
PG T |V 1 g TT oo B Y PR 14
4.1. Create or Open a DriVEr PrOJECEocuoiieieiieseee ettt 32
4.2. Select Your Plug-and-Play DEVICEccooeiieiieiiiie ettt sae e 33
4.3. DriverWizard INF File INfOrmMationcooeeiieiinieieee et 34
A4, PCl RESOUITEScoiiteiieeeitea et aateeateeateaeeeasaeesteesaeeaaseaaaeeaseeasesaaseasaeeebeesaeesaseasseeaseesaeesnneannns 36
A5, DEFING REJISIEN'S ...ttt ettt st e aeete st e sbe et e eseesaeeeeeneesbeeneesneans 36
4.6. Read/Write MemOory and 17O ...t 37
A.7. LiStEN TO INTEITUDES ...eeieieieeie ettt sttt e bt e st e see e s e e neesaeeneeeneesreenneeneens 37
4.8. Define Transfer Commands for Level-Sensitive INterruptsccoceveereeieneeneniee e 37
4.9. Code GeNEration OPLIONScocueieereeiierierieente e steeie e sreesesseesseeeesseessessesseessesneesseessesneens 38
4.10. Additional DIiVEr OPLIONSccceiierieeienieseeieeee st eee e seeeee e sseeeesseesseeseesseesseeneesseensens 38
6.1. Start DEDUG MONITOLc..oiiiiee et sttt e sreeneesneens 48
(V22 DT o 8o I o1 o o 1SR 49
6.3. wddebug Windows CE Start LOG MESSAJEccccoeeerieriierieenieeiesiee e seesiee e seesseeseesneeseesneens 54
6.4. wddebug Windows CE StOP LOG MESSAJEc.ceiuereiriieieeiesieesie et 54
11.1. Kernel Plugin ATCHITECIUIEooueiiieieieeee ettt s sne e 89
11.2. Interrupt Handling Without Kernel PIUGINcoooiiiiiiie e 108
11.3. Interrupt Handling With the Kernel Plugin ... 109

© 2015 Jungo Connectivity Ltd. Xi CONFIDENTIAL

Chapter 1
WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic steps of creating your
driver.

This manual outlines WinDriver's support for PCI/PCMCIA/CardBus/I SA/EISA/
CompactPCI/PCI Express devices.

WinDriver also supports the Universal Serial Bus (USB). For detailed information
regarding WinDriver USB, please refer to the WinDriver product page on our web site
(http://www.jungo.com/st/products/windriver/) and to the WinDriver USB Manual, which
isavailable online at http://www.jungo.com/st/support/windriver/.

1.1. Introduction to WinDriver

WinDriver is adevelopment toolkit that dramatically simplifies the difficult task of creating
device drivers and hardware access applications. WinDriver includes awizard and code
generation features that automatically detect your hardware and generate the driver to access it
from your application. The driver and application you develop using WinDriver is source code
compatible across all supported operating systems|[1.7]. The driver is binary compatible across
Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/
XP.

Bus architecture support includes PCI/PCM CIA/CardBus/I SA/EI SA/CompactPCI/PCI Express.
PCMCIA is supported only on Windows.

CardBus, | SA, and EISA are supported on Windows, Windows CE (including Windows Mobile),
and Linux.

WinDriver provides a complete solution for creating high-performance drivers.

Don't let the size of this manual fool you. WinDriver makes developing device drivers an

easy task that takes hoursinstead of months. Most of this manual deals with the features that
WinDriver offers to the advanced user. However, most developers will find that reading this
chapter and glancing through the DriverWizard and function reference chaptersis all they need to
successfully write their driver.

WinDriver supports development for all PCI/PCMCIA/CardBus/I SA/EISA/CompactPCl/
PCI Express chipsets, and offers enhanced support for specific chipsets, as outlined in Chapter 7.

© 2015 Jungo Connectivity Ltd. 1 CONFIDENTIAL

http://www.jungo.com/st/products/windriver/
http://www.jungo.com/st/support/windriver/

Chapter 1. WinDriver Overview

Chapter 10 explains how to tune your driver code to achieve optimal performance, with special
emphasis on WinDriver's Kernel Plugln feature. This feature allows the devel oper to write and
debug the entire device driver in the user mode, and later drop performance critical portions of the
code into kernel mode. In thisway the driver achieves optimal kernel-mode performance, while
the developer need not sacrifice the ease of user-mode devel opment. For a detailed overview of
the Kernel Plugln, refer to Chapters 11-12.

Visit Jungo's web site at http://www.jungo.com for the latest news about WinDriver and other
driver development tools that Jungo offers.

1.2. Background

1.2.1. The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot access
hardware directly from the application level (user mode), where development work is usually
done. Hardware can only be accessed from within the operating system itself (kernel mode or
Ring-0), utilizing software modules called device drivers. In order to access a custom hardware
device from the application level, a programmer must do the following:

* Learn the internas of the operating system he is working on.

 Learn how to write adevice driver.

» Learn new tools for devel oping/debugging in kernel mode (WDK, ETK, DDI/DKI).
» Write the kernel-mode device driver that does the basic hardware input/output.

» Write the application in user mode that accesses the hardware through the device driver written
in kernel mode.

* Repeat the first four steps for each new operating system on which the code should run.

1.2.2. The WinDriver Solution

» Easy Development: WinDriver enables Windows, Windows CE, and Linux programmers to
create PCI/PCM CIA/CardBus/| SA/EISA/CompactPCI/PCI Express based device driversin
an extremely short time. WinDriver allows you to create your driver in the familiar user-mode
environment, using MS Visua Studio, MS eMbedded Visual C++, MS Platform Builder C++,
GCC, Windows GCC, or any other appropriate compiler or development environment. Y ou do
not need to have any device driver knowledge, nor do you have to be familiar with operating
system internals, kernel programming, the WDK, ETK or DDI/DKI.

* CrossPlatform: The driver created with WinDriver will run on Windows 8.1/Server 2012
R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/X P, Embedded Windows
8.1/8/7/XP, Windows CE (a.k.a. Windows Embedded Compact) 4.x—8.x (including Windows
Mobile), and Linux. In other words — write it once, run it on many platforms.

© 2015 Jungo Connectivity Ltd. 2 CONFIDENTIAL

http://www.jungo.com

Chapter 1. WinDriver Overview

* Friendly Wizards: DriverWizard (included) is agraphical diagnostics tool that lets you
view /define the device's resources and test the communication with the hardware with just a
few mouse clicks, before writing asingle line of code. Once the device is operating to your
satisfaction, DriverWizard creates the skeletal driver source code, giving access functionsto all
the resources on the hardware.

» Kernel-Mode Performance: WinDriver's API is optimized for performance.
For drivers that need kernel-mode performance, WinDriver offers the Kernel Plugin. This
powerful feature enables you to create and debug your code in user mode and run the
performance-critical parts of your code (such as the interrupt handling or accessto I/O
mapped memory ranges) in kernel mode, thereby achieving kernel-mode performance (zero
performance degradation). This unique feature allows the devel oper to run user-mode code in
the OS kernel without having to learn how the kernel works. For a detailed overview of this
feature, see Chapter 11.
Kernel Plugin is not implemented under Windows CE. In this operating system thereis no
separation between kernel mode and user mode, therefore top performance can be achieved
without using the Kernel Plugin. To improve the interrupt handling rate on Windows CE,
follow the instructions in Section 9.2.9.1 of the manual.

1.3. How Fast Can WinDriver Go?

Y ou can expect the same throughput using the WinDriver Kernel Plugln as when using a custom
kernel driver. Throughput is constrained only by the limitations of your operating system

and hardware. A rough estimate of the throughput you can obtain using the Kernel Pluginis
approximately 100,000 interrupts per second.

1.4. Conclusion

Using WinDriver, a developer need only do the following to create an application that accesses
the custom hardware:

» Start DriverWizard and detect the hardware and its resources.

» Automatically generate the device driver code from within DriverWizard, or use one of
the WinDriver samples as the basis for the application (see Chapter 7 for an overview of
WinDriver's enhanced support for specific chipsets).

* Modify the user-mode application, as needed, using the generated/sample functions to
implement the desired functionality for your application.

Y our hardware access application will run on all the supported platforms [1.7] — just recompile
the code for the target platform. The code is binary compatible across Windows 8.1/Server 2012
R2/8/Server 2012/7/Server 2008 R2/Vistal/Server 2008/Server 2003/XP platforms; thereisno
need to rebuild the code when porting it across binary-compatible platforms.

© 2015 Jungo Connectivity Ltd. 3 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.5. WinDriver Benefits

» Easy user-mode driver development.

» Kernel Plugin for high-performance drivers.

* Friendly DriverWizard allows hardware diagnostics without writing a single line of code.
» Automatically generates the driver code for the project in C or C#.

» Supports any PCI/PCMCIA/CardBus/| SA/EISA/CompactPCI/PCI Express device, regardless
of manufacturer.

» Enhanced support for specific chipsets [7] frees the developer of the need to study the
hardware's specification.

» Applications are binary compatible across Windows 8.1/Server 2012 R2/8/Server 2012/7/
Server 2008 R2/Vistal/Server 2008/Server 2003/XP.

» Applications are source code compatible across all supported operating systems — Windows
8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/VistalServer 2008/Server 2003/XP,
Embedded Windows 8.1/8/7/XP, Windows CE (a.k.a. Windows Embedded Compact) 4.x—8.x
(including Windows Mobile), and Linux.

* Can be used with common development environments, including MS Visua Studio, MS
eMbedded Visual C++, MS Platform Builder C++, GCC, Windows GCC, or any other
appropriate compiler/environment.

* NoWDK, ETK, DDI or any system-level programming knowledge required.

» Supports I/O, DMA, interrupt handling and access to memory-mapped cards.

 Supports multiple CPUs and multiple PCI bus platforms (PCI/PCMCIA/CardBus/| SA/EISA/
CompactPCI/PCI Express).

» Supports 64-bit PCI data transfers.

* Includes dynamic driver loader.

» Comprehensive documentation and help files.

» Detailed examplesin C or C#.

» WinDriver Windows drivers are compliant with Microsoft's Windows Certification Program
» Two months of free technical support.

* No run-time fees or royalties.

© 2015 Jungo Connectivity Ltd. 4 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.6. WinDriver Architecture

Figure 1.1. WinDriver Architecture

Your Application / DIl / Shared Object

Your Driver Code

A A

\ 4

WinDriver .NET Wrapper API
(wdapi_dotnet DLL)

A

Y Y

High-level WinDriver API
(wdapi DLL / shared object)

Kernel Mode

Kernel Pluglin (optional)

Y

: Low-Level WinDriver API
|;;r;oulr Kgrpel S e ""-—-n. (WinDriver Kernel Module -
ugin Driver | b el : windrvr6.sys/.dll/.o/.ko)
Performance- Plualn :

Critical Code 9

Your Hardware

D Components You Write
] winDriver Components

[D] OS Components

For hardware access, your application calls one of the WinDriver user-mode functions. The user-
mode function calls the WinDriver kernel, which accesses the hardware for you through the
native calls of the operating system.

WinDriver's design minimizes performance hits on your code, even though it isrunningin

user mode. However, some hardware drivers have high performance requirements that cannot
be achieved in user mode. Thisiswhere WinDriver's edge sharpens. After easily creating and
debugging your code in user mode, you may drop the performance-critical modules of your
code (such as a hardware interrupt handler) into the WinDriver Kernel Plugln without changing

© 2015 Jungo Connectivity Ltd. 5 CONFIDENTIAL

Chapter 1. WinDriver Overview

them at all. Now, the WinDriver kernel calls this module from kernel mode, thereby achieving
maximal performance. This allows you to program and debug in user mode, and still achieve
kernel performance where needed. For a detailed overview of the Kernel Plugln feature, see
Chapter 11.

Kernel Plugin is not implemented under Windows CE. In this operating system thereis no
separation between kernel mode and user mode, therefore top performance can be achieved
without using the Kernel Plugin. To improve the interrupt handling rate on Windows CE, follow
the instructionsin Section 9.2.9.1 of the manual.

1.7. What Platforms Does WinDriver Support?

WinDriver supports the following operating systems:

» Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/Vista/Server 2008/ Server 2003/
XP and Embedded Windows 8.1/8/7/XP — henceforth collectively: Windows

» Windows CE (a.k.a. Windows Embedded Compact) 4.x—8.x (including Windows Mobile) —
henceforth collectively: Windows CE

e Linux

The same source code will run on all supported platforms — simply recompileit for the target
platform. The source code is binary compatible across Windows 8.1/Server 2012 R2/8/Server
2012/7/Server 2008 R2/VistalServer 2008/Server 2003/XP; WinDriver executables can be ported
among the binary-compatible platforms without recompilation.

Even if your code is meant only for one of the supported operating systems, using WinDriver
will give you the flexibility to move your driver to another operating system in the future without
needing to change your code.

1.8. Limitations of the Different Evaluation
Versions

All the evaluation versions of WinDriver are full featured. No functions are limited or crippled in
any way. The evaluation version of WinDriver varies from the registered version in the following

ways:
» Each time WinDriver is activated, an Unregistered message appears.

* When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* IntheLinux and Windows CE versions, the driver will remain operational for 60 minutes, after
which time it must be restarted.

» The Windows evaluation version expires 30 days from the date of installation.

© 2015 Jungo Connectivity Ltd. 6 CONFIDENTIAL

Chapter 1. WinDriver Overview

For more details please refer to Appendix D.

1.9. How Do | Develop My Driver with
WinDriver?

1.9.1. On Windows and Linux

. Start DriverWizard and use it to diagnose your hardware — see details in Chapter 4.

Let DriverWizard generate skeletal code for your driver, or use one of the WinDriver samples
asthe basis for your driver application (see Chapter 7 for details regarding WinDriver's
enhanced support for specific chipsets).

Modify the generated/sample code to suit your application’s needs.

Run and debug your driver in the user mode.

If your code contains performance-critical sections, refer to Chapter 10 for suggestions on
how to improve your driver's performance.

"
1

The code generated by DriverWizard is a diagnostics program that contains functions that
read and write to any resource detected or defined (including custom-defined registers),
enables your card's interrupts, listens to them, and more.

1.9.2. On Windows CE

Plug your hardware into a Windows host machine.

Diagnose your hardware using DriverWizard.

Let DriverWizard generate your driver's skeletal code.

Modify this code, using MS eMbedded Visual C++, to meet your specific needs. If you
are using M S Platform Builder, activate it and insert the generated * .pbp into your project

solution.

Test your driver on the target embedded Windows CE platorm.

W/

If you cannot plug your hardware into a Windows host machine, you can still use
DriverWizard to generate code for your device by manually entering all your resourcesin
the wizard. Let DriverWizard generate your code and then test it on your hardware using a
serial connection. After verifying that the generated code works properly, modify it to meet
your specific needs. Y ou may also use (or combine) any of the sample files for your driver's
skeletal code.

© 2015 Jungo Connectivity Ltd. 7 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.10. What Does the WinDriver ToolkKit
Include?

A printed version of this manual

Two months of free technical support (Phone/Fax/Email)
WinDriver modules

Utilities

Samples and wrapper APIs for enhanced-support chipsets

1.10.1. WinDriver Modules

WinDriver (WinDriver/include) — the general purpose hardware access toolkit. The main
fileshere are

« windrvr.h: Declarations and definitions of WinDriver's basic API.

« wdc_lib.h and wdc_defs.h: Declarations and definitions of the WinDriver Card (WDC)
library, which provides convenient wrapper APIs for accessing PCI/PCMCIA/CardBus/ISA/
ElISA/CompactPCI/PCI Express devices (see Section B.2).

« windrvr_int_thread.h: Declarations of convenient wrapper functions to simplify interrupt
handling.

« windrvr_events.h: Declarations of APIsfor handling Plug-and-Play and power management
events.

« utils.h: Declarations of general utility functions.

« status _strings.h: Declarations of API for converting WinDriver status codes to descriptive
error strings.

DriverWizard (WinDriver /wizar d/wdwizar d) — a graphical application that diagnoses
your hardware and enables you to easily generate code for your driver (refer to Chapter 4 for
details).

Debug Monitor — a debugging tool that collects information about your driver asit runs. This
tool isavailable both asafully graphical application — WinDriver/util/wddebug_gui — and
as a console-mode application — WinDriver/util/wddebug. The console-mode version also
supports GUI execution on Windows CE platforms that don't have a command-line prompt.
For details regarding the Debug Monitor, refer to Section 6.2.

WinDriver distribution package (WinDriver/redist) — the files you include in the driver
distribution to customers.

© 2015 Jungo Connectivity Ltd. 8 CONFIDENTIAL

Chapter 1. WinDriver Overview

* WinDriver Kernel Plugin — the files and samples needed to create a kernel-mode Kernel
Plugln driver (refer to Chapter 11 for details.)

* Thismanual — the full WinDriver manual (this document), in different formats, can be found
under the WinDriver/docs directory.

1.10.2. Utilities

* pci_dump.exe (WinDriver/util/pci_dump.exe) — used to obtain a dump of the PCI
configuration registers of the installed PCI cards.

» pci_diag.exe (WinDriver/util/pci_diag.exe) — used for reading/writing PCI configuration
registers, accessing PCI 1/0O and memory ranges and handling PCI interrupts.

» pci_scan.exe (WinDriver/util/pci_scan.exe) — used to obtain alist of the PCI cardsinstalled
and the resources allocated for each card.

* pcmcia_diag.exe (WinDriver/util/pcmcia_diag.exe) — used for reading/writing PCMCIA
attribute space, accessing PCMCIA 1/0 and memory ranges and handling PCMCIA interrupts.

* pcmcia_scan.exe (WinDriver/util/pcmcia_scan.exe) — used to obtain alist of the PCMCIA
cards installed and the resources allocated for each card.

1.10.3. Samples and Enhanced-Support Chipset
APls

WinDriver includes a variety of samples that demonstrate how to use WinDriver's API to
communicate with your device and perform various driver tasks.

» C samples: found under the WinDriver/samples directory.
These samples a so include the source code for the utilities listed above [1.10.2].

* .NET C# samples (Windows): found under the WinDriver\csharp.net directory.

© 2015 Jungo Connectivity Ltd. 9 CONFIDENTIAL

Chapter 1. WinDriver Overview

1.10.3.1. Enhanced Chipset Support

In addition to the generic samples described above, WinDriver provides custom wrapper APIs and
sample code for major PCI chipsets, as outlined in Chapter 7. The relevant files are provided in
the following WinDriver installation directories:

» PLX 6466, 9030, 9050, 9052, 9054, 9056, 9080 and 9656 — WinDriver/plx
» AlteraQsysdesign — WinDriver/altera/qsys design
» Xilinx Bus Master DMA (BMD) design — WinDriver/xilinx/omd_design

For the Xilinx BMD and Altera Qsys designs there is al'so an option to generate customized driver
code that utilizes the related enhanced-support APIs.

1.11. Can | Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a devel opment toolkit, and any device driver created using
WinDriver may be distributed, royalties free, in as many copies as you wish. See the license
agreement at (WinDriver/docswd_license.pdf) for more details.

© 2015 Jungo Connectivity Ltd. 10 CONFIDENTIAL

Chapter 2
Understanding Device Drivers

This chapter provides you with a general introduction to device drivers and takes you through the
structural elements of adevice driver.

Using WinDriver, you do not need to familiarize yourself with the internal workings of
driver development. As explained in Chapter 1 of the manual, WinDriver enables you to
communicate with your hardware and develop adriver for your device from the user mode,
using only WinDriver's ssimple APIs, without any need for driver or kernel development
knowledge.

2.1. Device Driver Overview

Device drivers are the software segments that provides an interface between the operating system
and the specific hardware devices such as terminals, disks, tape drives, video cards and network
media. The device driver brings the device into and out of service, sets hardware parametersin the
device, transmits data from the kernel to the device, receives datafrom the device and passes it
back to the kernel, and handles device errors.

A driver acts like atrangator between the device and programs that use the device. Each device
has its own set of specialized commands that only its driver knows. In contrast, most programs
access devices by using generic commands. The driver, therefore, accepts generic commands
from a program and then translates them into specialized commands for the device.

2.2. Classification of Drivers According to
Functionality

There are numerous driver types, differing in their functionality. This subsection briefly describes
three of the most common driver types.

2.2.1. Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to support a
hardware device. A monolithic driver is accessed by one or more user applications, and directly
drives a hardware device. The driver communicates with the application through 1/O control
commands (IOCTLs) and drives the hardware using calls to the different WDK, ETK, DDI/DKI
functions.

© 2015 Jungo Connectivity Ltd. 11 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure2.1. Monolithic Drivers

Application

i Uszer Mode
Kemnel Mode

HW

-

Monolithic drivers are supported in all operating systems including all Windows platforms and all
Unix platforms.

2.2.2. Layered Drivers

Layered drivers are device drivers that are part of a stack of device drivers that together process
an 1/0 request. An example of alayered driver isadriver that intercepts cals to the disk and
encrypts/decrypts al data being transferred to/from the disk. In this example, a driver would be
hooked on to the top of the existing driver and would only do the encryption/decryption.

Layered drivers are sometimes also known asfilter drivers, and are supported in all operating
systems including all Windows platforms and all Unix platforms.

© 2015 Jungo Connectivity Ltd. 12 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure2.2. Layered Drivers

Application

il

2.2.3. Miniport Drivers

A Miniport driver is an add-on to aclass driver that supports miniport drivers. It is used so the
miniport driver does not have to implement all of the functions required of adriver for that class.
The class driver provides the basic class functionality for the miniport driver.

A classdriver isadriver that supports a group of devices of common functionality, such as all
HID devices or al network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in the
Windows XP and higher operating systems.

© 2015 Jungo Connectivity Ltd. 13 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

Figure 2.3. Miniport Drivers

Application
Uzer Mode
Kernel Mode
Q\\\\\\\\\\\\\\\\\‘Q
E WNDIS Framewoarls s
%\\\\}\T\\T\\Tx\\\ﬁ
\ Miniport
\ Ciriver
LT T
DO
N)
HW
i

The Windows XP and higher operating systems provide several driver classes (called ports)

that handle the common functionality of their class. It isthen up to the user to add only the
functionality that has to do with the inner workings of the specific hardware. The NDIS miniport
driver is one example of such adriver. The NDIS miniport framework is used to create network
drivers that hook up to Windows's communication stacks, and are therefore accessible to common
communication calls used by applications. The Windows kernel provides drivers for the various
communication stacks and other code that is common to communication cards. Due to the NDIS
framework, the network card developer does not have to write all of this code, only the code that
is specific to the network card he is developing.

2.3. Classification of Drivers According to
Operating Systems

2.3.1. WDM Drivers

Windows Driver Model (WDM) drivers are kernel-mode drivers within the Windows operating
systems. WDM works by channeling some of the work of the device driver into portions of

the code that are integrated into the operating system. These portions of code handle al of the
low-level buffer management, including DMA and Plug-and-Play (Pnp) device enumeration.
WDM drivers are PnP drivers that support power management protocols, and include monolithic
drivers, layered drivers and miniport drivers.

© 2015 Jungo Connectivity Ltd. 14 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

2.3.2. Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character (char)
devices, block devices and network devices. Drivers that implement these devices are
correspondingly known as char drivers, block drivers or network drivers. Under Unix, drivers
are code units linked into the kernel that run in privileged kernel mode. Generally, driver code
runs on behalf of a user-mode application. Accessto Unix drivers from user-mode applicationsis
provided viathe file system. In other words, devices appear to the applications as special device
filesthat can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can be perceived
as aone-layer layered driver.

2.3.3. Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model [2.3.2]. In addition, Linux
introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, asin Unix, but also has a
block-oriented interface that is invisible to the user or application.

Traditionally, under Unix, device drivers are linked with the kernel, and the system is brought
down and restarted after installing a new driver. Linux introduces the concept of a dynamically
loadable driver called amodule. Linux modules can be loaded or removed dynamically without
requiring the system to be shut down. A Linux driver can be written so that it is statically linked
or written in amodular form that allows it to be dynamically loaded. This makes Linux memory
usage very efficient because modules can be written to probe for their own hardware and unload
themselvesif they cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic drivers.

2.4. The Entry Point of the Driver

Every device driver must have one main entry point, like the mai n() function in a C console
application. Thisentry pointiscaled Dri ver Ent ry() in Windowsandi ni t _nodul e() in
Linux. When the operating system loads the device driver, this driver entry procedure is called.

There is some global initialization that every driver needs to perform only once when

it isloaded for the first time. This global initialization is the responsibility of the

Driver Entry()/i nit _nodul e() routine. The entry function also registers which driver
callbacks will be called by the operating system. These driver callbacks are operating system
requests for services from the driver. In Windows, these callbacks are called dispatch routines,
and in Linux they are called file operations. Each registered callback is called by the operating
system as aresult of some criteria, such as disconnection of hardware, for example.

© 2015 Jungo Connectivity Ltd. 15 CONFIDENTIAL

Chapter 2. Understanding Device Drivers

2.5. Associating the Hardware with the Driver

Operating systems differ in the ways they associate a device with a specific driver.

In Windows, the hardware-driver association is performed viaan INF file, which registers the
device to work with the driver. This association is performed before the Dr i ver Ent r y() routine
is caled. The operating system recognizes the device, checks its database to identify which INF
fileis associated with the device, and according to the INF file, calls the driver's entry point.

In Linux, the hardware-driver association is defined in the driver'si ni t _nmodul e() routine. This
routine includes a callback that indicates which hardware the driver is designated to handle. The
operating system calls the driver's entry point, based on the definition in the code.

2.6. Communicating with Drivers

Communi cation between a user-mode application and the driver that drives the hardware,
isimplemented differently for each operating system, using the custom OS Application
Programming Interfaces (APIs).

On Windows, Windows CE, and Linux, the application can use the OS file-access API to open
ahandle to the driver (e.g., using the Windows Cr eat eFi | e() function or using the Linux
open() function), and then read and write from/to the device by passing the handle to the relevant
OS file-access functions (e.g., the Windows ReadFi | e() and Wi t eFi | e() functions, or the
Linux read() and w i t e() functions).

The application sends requests to the driver vial/O control (IOCTL) calls, using the custom OS
APIs provided for this purpose (e.g., the Windows Devi cel oCont r ol () function, or the Linux
i oct | () function).

The data passed between the driver and the application viathe IOCTL callsis encapsulated using
custom OS mechanisms. For example, on Windows the data is passed via an 1/0 Request Packet
(IRP) structure, and is encapsulated by the I/O Manager.

© 2015 Jungo Connectivity Ltd. 16 CONFIDENTIAL

Chapter 3
Installing WinDriver

This chapter takes you through the process of installing WinDriver on your development
platform, and shows you how to verify that your WinDriver is properly installed. The last section
discusses the uninstall procedure. To find out how to install the driver you create on target
platforms, refer to Chapter 14.

3.1. System Requirements

3.1.1. Windows System Requirements

* Any x86 32-bit or 64-bit (x64: AMD64 or Intel EM64T) processor
* Any compiler or development environment supporting C or .NET

* Windows XP requires at least SP2

© 2015 Jungo Connectivity Ltd. 17 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.1.2. Windows CE System Requirements

* Anx86 or ARM target platform running Windows CE (a.k.a. Windows Embedded Compact)
4.x-8.x (including Windows Mobile)
OR
aMIPS target platform running Windows CE 4.x—7.x (including Windows Mobile)

* Windows 8.1/Server 2012 R2/8/Server 2012/7/Server 2008 R2/Vista/Server 2008/Server 2003/
XP host development platform

* |IDE:

For Windows CE 4.x-5.x (including Windows Mobile):

» Microsoft eMbedded Visual C++ or Microsoft Visua Studio 2005/2008, with a
corresponding target SDK

OR

* Microsoft Platform Builder with a corresponding Board Support Package (BSP) for the
target platform

= For Windows CE 6.x: Microsoft Visual Studio 2005/2008 with a corresponding target SDK
or with the Windows CE 6.0 plugin

« For Windows CE 7.x: Microsoft Visual Studio 2008 with the Windows Embedded Compact
7 plugin

« For Windows CE 8.x: Microsoft Visual Studio 2012 or higher with the Application Builder
for Windows Embedded Compact 2013 plugin

© 2015 Jungo Connectivity Ltd. 18 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.1.3. Linux System Requirements

» Any of the following processor architectures, with a2.6.x or higher Linux kernel:
= 32-bit x86
« 64-bit x86 AMDG64 or Intel EM64T (x86_64)
« 32-bit PowerPC

« 64-bit PowerPC (ppc64)

Jungo strives to support new Linux kernel versions as close as possible to their release.
To find out the latest supported kernel version, refer to the WinDriver release notes
(found online at http://www.jungo.com/st/support/windriver/wdver/).

A GCC compiler

The version of the GCC compiler should match the compiler version used for building
the running Linux kernel.

Any 32-bit or 64-hit development environment (depending on your target configuration)
supporting C for user mode

On your development PC: glibc2.3.x

libstdc++.s0.5 — required for running GUI WinDriver applications (e.g., DriverWizard [4];
Debug Monitor [6.2])

3.2. WinDriver Installation Process

3.2.1. Windows WinDriver Installation Instructions

Driver installation on Windows requires administrator privileges.

1. Run the WinDriver installation — WD1180.EXE — and follow the installation instructions.

2. At the end of the installation, you may be prompted to reboot your computer.

© 2015 Jungo Connectivity Ltd. 19 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/wdver/

Chapter 3. Installing WinDriver

* The WinDriver installation definesaWD_BASEDI R environment variable, which is set to
point to the location of your WinDriver directory, as selected during the installation. This
variable is used during the DriverWizard [4] code generation — it determines the default
directory for saving your generated code and is used in the include paths of the generated
project/makefiles. Thisvariableisalso used in the sample Kernel Plugln projects and
makefiles.

* If theinstalation failswith an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL_MACHI NE\ SOFTWARE
\' M crosof t\ Wndows\ Current Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install drivers using INF files. If the
RunOnce key ismissing, create it; then try installing the INF file again.

Thefollowing stepsarefor registered usersonly:
To register your copy of WinDriver with the license you received from Jungo, follow these steps.
3. Start DriverWizard: Start | Programs | WinDriver | DriverWizard.

4. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

5. Click the Activate L icense button.

6. To register source code that you developed during the evaluation period, refer to the
documentation of WDC_Drx i ver OQpen() [B.3.2]. When using the low-level WD _xxx API
instead of the WDC _xxx API [B.2] (whichisused by default), refer to the documentation of
WD Li cense() intheWinDriver PCI Low-Level API Reference.

3.2.2. Windows CE WinDriver Installation
Instructions

3.2.2.1. Installing WinDriver CE when Building New
CE-Based Platforms

» Thefollowing instructions apply to platform devel opers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with
the appropriate Windows CE plugin. The instructions use the notation ‘Windows CE
IDE' to refer to either of these platforms.

» Werecommend that you read Microsoft's documentation and understand the Windows
CE and device driver integration procedure before you perform the installation.

© 2015 Jungo Connectivity Ltd. 20 CONFIDENTIAL

Chapter 3. Installing WinDriver

1. Modify the project registry file— WinDriver\samples\wince install\project_wd.reg — to
add an entry for your target device.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — hexadecimal in the case of PCI devices.

2. Compile your Windows CE platform (Sysgen stage).
3. Integrate the driver into your platform:
a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file —
WinDriver\redist\<sTARGET_CPU>\windrvr6.dIl — to the
% FLATRELEASEDIR% subdirectory on the target development platform (should be
the current directory in the new command window).

d. Append the contents of WinDriver\samples\wince _install\project_wd.reg to the
% _FLATRELEASEDIR%\project.reg registry file.

e. Copy the contents of the WinDriver\samples\wince install\project_wd.bib
file to the FILES section of the binary image builder file —
% _ FLATRELEASEDIR%\project.bib. Then uncomment the line that matches the
target platform (see the "TODQO" comments in the copied text).

This step is only necessary if you want the WinDriver CE kernel file
(windrvr6.dIl) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using
aboot disk. If you prefer to have the file windrvr 6.dll loaded on demand via
the CESH/PPSH services, you do not need to perform this step until you build a
permanent kernel.

4. Select Make Run-Time Image from the Build menu to save the new image (NK.BIN).

5. Download your new kernel to the target platform and initialize it either by selecting
Attach Device from the Target menu, or by using a boot disk. For Windows CE 4., the
menu is called Download/I nitialize rather than Attach Device.

6. Restart your target CE platform. The WinDriver CE kernel will automatically load.

7. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 3.4.2, which describes how to check your installation).

© 2015 Jungo Connectivity Ltd. 21 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.2.2.2. Installing WinDriver CE when Developing
Applications for Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

The following instructions apply to driver developers who do not build the Windows CE kernel,
but only download their drivers, built using MS eMbedded Visual C++ or MS Visua Studio
2005/2008 to a ready-made Windows CE platform.

1. Run the WinDriver installation — WD1180CE.EXE — on your host Windows PC, and
complete the installation.

2. Copy WinDriver's kernel module — windrvr 6.dll — from the
WinDriver\redist\WINCE\<TARGET _CPU> directory on the Windows host devel opment
PC to the Windows directory on your target Windows CE platform.

3. Add WinDriver to the list of device drivers Windows CE |oads on boot:

* Modify the registry according to the entries documented in the file
WinDriver\samples\wince_install\project_wd.reg. This can be done using the Windows
CE Pocket Registry Editor on the hand-held CE computer, or by using the Remote CE
Registry Editor Tool supplied with MS eMbedded Visual C++ or MS Visual Studio
2005/2008. Note that in order to use the Remote CE Registry Editor tool you will need to
have Windows CE Servicesinstalled on your Windows host platform.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — hexadecimal in the case of PCI devices.

"
1

* On many versions of Windows CE, the operating system's security scheme prevents the
loading of unsigned drivers at boot time, therefore the WinDriver kernel module hasto
be reloaded after boot. To load WinDriver on the target Windows CE platform every time
the OS is started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe
utility to the Windows\Star tUp directory on the target PC.

4. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

5. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 3.4, which describes how to check your installation).

© 2015 Jungo Connectivity Ltd. 22 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.2.2.3. Windows CE Installation Note

The WinDriver installation on the host Windows PC definesaWWD_BASEDI R environment
variable, which is set to point to the location of your WinDriver directory, as selected during the
installation. This variable is used during the DriverWizard [4] code generation — it determines
the default directory for saving your generated code, and is used in the include paths of the
generated project/make files.

Note that if you install the WinDriver Windows toolkit on the same host PC, the installation will
override the value of the WD_BASEDI R variable from the Windows CE installation.

3.2.3. Linux WinDriver Installation Instructions

3.2.3.1. Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header files that the kernel itself was
compiled with. Since WinDriver installs kernel modules, it must compile with the header files of
the Linux kernel during the installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code and thefile
version.h areinstalled on your machine:

Install the Linux kernel sour ce code:

 |If you haveyet to install Linux, install it, including the kernel source code, by following the
instructions for your Linux distribution.

 If Linux isaready installed on your machine, check whether the Linux source code was
installed. Y ou can do this by looking for ‘linux' in the /usr/sr ¢ directory. If the source code
isnot installed, either install it, or reinstall Linux with the source code, by following the
instructions for your Linux distribution.

I nstall version.h:

» Thefileversion.h is created when you first compile the Linux kernel source code.
Some distributions provide a compiled kernel without the file ver sion.h. Look under
lusr/src/linux/include/linux to see whether you have thisfile. If you do not, follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd /usr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosing Save and Exit.

© 2015 Jungo Connectivity Ltd. 23 CONFIDENTIAL

Chapter 3. Installing WinDriver

5. Type:
make dep

6. Exit super user mode:
exit

To run GUI WinDriver applications (e.g., DriverWizard [4]; Debug Monitor [6.2]) you must also
have version 5.0 of the libstdc++ library — libstdc++.50.5. If you do not have thisfile, install it
from the relevant RPM in your Linux distribution (e.g., compat-libstdc++).

Before proceeding with the installation, you must also make sure that you have alinux symbolic
link. If you do not, create one by typing

fusr/src$ In -s <target kernel >/Iinux

For example, for the Linux 2.4 kernel type

fusr/src$ In -s linux-2.4/ |inux

3.2.3.2. Installation

1. On your development Linux machine, change directory to your preferred installation
directory, for example to your home directory:
$ cd ~

The path to the installation directory must not contain any spaces.

"
1

2. Extract the WinDriver distribution file— WD21180L N.tgz or WD1180L Nx86_64.tgz —
$ tar xvzf <file location> WD1180LN x86_64].tgz

For example, to extract WD1180L N.tgz run this command:
$ tar xvzf ~/WD1180LN.tgz

3. Change directory to your WinDriver redist directory (the tar automatically creates a
WinDriver directory):
$ cd <WnDriver directory path>/redi st

4. Install WinDriver:

a <WnbDriver directory>/redist$
./ configure --disabl e-usb-support

© 2015 Jungo Connectivity Ltd. 24 CONFIDENTIAL

Chapter 3. Installing WinDriver

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with
the- - w t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full
path to the kernel source directory — e.g., /usr/src/linux.

« If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use
of kbuild on earlier versions of Linux, by executing the configuration script
with the - - enabl e- kbui | d flag.

» For afull list of the configuration script options, use the - - hel p option:
./lconfigure --help

b. <WnDriver directory>/redist$ nake

c. Become super user:
<WnDriver directory>/redist$ su

d. Install the driver:
<WnDriver directory>/redist# make install

5. Create asymbolic link so that you can easily launch the DriverWizard GUI:
$In -s <path to WnDriver>/w zard/ wdwi zard /usr/bi n/wdwi zard

6. Change the read and execute permissions on the file wdwizard so that ordinary users can
access this program.

7. Change the user and group IDs and give read/write permissions to the device file
/dev/windrvr 6, depending on how you wish to allow users to access hardware
through the device. Due to security reasons, by default the devicefileis created
with permissions only for the root user. Change the permissions by modifying your
/etc/udev/per missions.d/50-udev.per missions file. For example, add the following line to
provide read and write permissions:
wi ndrvr6: root:root: 0666

8. Defineanew WD _BASEDI R environment variable and set it to point to the location of your
WinDriver directory, as selected during the installation. This variable is used in the make and
source files of the WinDriver samples and generated DriverWizard [4] code, and is also used
to determine the default directory for saving your generated DriverWizard projects. If you do
not define this variable you will be instructed to do so when attempting to build the sample/
generated code using the WinDriver makefiles.

9. Exit super user mode:
exit

10. You can now start using WinDriver to access your hardware and generate your driver code!

© 2015 Jungo Connectivity Ltd. 25 CONFIDENTIAL

Chapter 3. Installing WinDriver

Use the WinDriver/util/wdreg script to load the WinDriver kernel module [13.3].

Le 3)

Thefollowing stepsarefor registered usersonly:
To register your copy of WinDriver with the license you received from Jungo, follow these steps.

12. Start DriverWizard:
$ <path to WnDriver>/w zard/ wdwi zar d

13. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

14. Click the Activate License button.
15. To register source code that you devel oped during the evaluation period, refer to the
documentation of WDC_Drx i ver Qpen() [B.3.2]. When using the low-level WD _xxx API

instead of the WDC_xxx API [B.2] (whichisused by default), refer to the documentation of
WD Li cense() intheWinDriver PCI Low-Level API Reference.

3.2.3.3. Restricting Hardware Access on Linux

@ Since /dev/windrvr 6 gives direct hardware access to user programs, it may compromise
kernel stability on multi-user Linux systems. Please restrict access to DriverWizard and the
devicefile/dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically perform the
steps of changing the permissions on /dev/windrvr 6 and the DriverWizard application
(wdwizard).

3.3. Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, follow the steps outlined in
Section 3.2.1, which illustrate the process of installing WinDriver for Windows. Y ou can either
choose to overwrite the existing installation or install to a separate directory.

After installation, start DriverWizard and enter the new license string, if you have received one.
This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license string as a parameter to
WDC_Dri ver Open() [B.3.2] (ortoWD_Li cense() — seethe WinDriver PCI Low-L evel
API Reference — when using the low-level WD_xxx API instead of the WDC_xxx API [B.2].

The procedure for upgrading your installation on other operating systems is the same as the one
described above. Please check the respective installation sections for installation details.

© 2015 Jungo Connectivity Ltd. 26 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.4. Checking Your Installation

3.4.1. Windows and Linux Installation Check

1. Start DriverWizard — <path to WinDriver>/wizar d/wdwizard. On Windows you can aso
run DriverWizard from the Start menu: Start | Programs | WinDriver | DriverWizard.

2. If you are aregistered user, make sure that your WinDriver licenseisregistered (refer to
Section 3.2, which explains how to install WinDriver and register your license).
If you are an evaluation version user, you do not need to register alicense.

3. For PCI cards — Insert your card into the PCI bus, and verify that DriverWizard detectsiit.

4. For ISA cards (Windows and Linux) — Insert your card into the ISA bus, configure
DriverWizard with your card's resources and try to read/write to the card using DriverWizard.

3.4.2. Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility —
WinDriver\util\wddebug\<TARGET _CPU>\wddebug.exe — from the host Windows
machine to adirectory on your target Windows CE device.

2. Run the Debug Monitor with the st at us command on the target device:
wddebug. exe st at us
If the WinDriver installation was successful, the application will display information

regarding the Debug Monitor version and current status, the running WinDriver kernel
module, and general system information.

3.5. Uninstalling WinDriver

This section will help you to uninstall either the evaluation or registered version of WinDriver.

3.5.1. Windows WinDriver Uninstall Instructions

* You can select to use the graphical wdreg_gui.exe utility instead of wdr eg.exe.

» wdreg.exe and wdreg_gui.exe are found in the WinDriver\util directory (see Chapter 13
for details regarding these utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug Monitor, and
user-specific applications.

© 2015 Jungo Connectivity Ltd. 27 CONFIDENTIAL

Chapter 3. Installing WinDriver

2. If you created aKernel Pluglin driver [11], uninstall and eraseit:

a. If your Kernel Plugin driver is currently installed, uninstall it using the wdreg utility:
wdr eg - nanme <Kernel Plugln name> uninstall

; TheKernel Plugin driver name should be specified without the *.sys extension.

b. Erase your Kernel Plugln driver from the % windir % \system32\driver s directory.

3. Uningtall all Plug-and-Play devices (USB/PCI/PCMCIA) that have been registered with
WinDriver viaan INF file:

» Uninstall the device using the wdr eg utility:
wdreg -inf <path to the INF file> uninstall

» Verify that no INF files that register your device(s) with WinDriver's kernel module
(windrvr6.sys) are found in the %owindir %\inf directory.

4. Uninstall WinDriver:

* On the development PC, on which you installed the WinDriver toolkit:
Run Start | WinDriver | Uninstall , OR run the uninstall.exe utility from the WinDriver
installation directory.

The uninstall will stop and unload the WinDriver kernel module (windrvr 6.sys); delete the
copy of the windrvr6.inf file from the % windir %\inf directory; delete WinDriver from
Windows' Start menu; delete the WinDriver installation directory (except for files that
you added to this directory); and delete the shortcut icons to the DriverWizard and Debug
Monitor utilities from the Desktop.

* On atarget PC, on which you installed the WinDriver kernel module (windrvr 6.sys), but
not the entire WinDriver toolKkit:
Use the wdr eg utility to stop and unload the driver:
wdreg -inf <path to wi ndrvr6.inf> uninstall

When running this command, windr vr 6.sys should reside in the same directory as
windrvr6.inf.

"
1

(On the development PC, the relevant wdr eg uninstall command is executed for you by the
uninstall utility).

© 2015 Jungo Connectivity Ltd. 28 CONFIDENTIAL

Chapter 3. Installing WinDriver

* If you attempt to uninstall WinDriver while there are open handles to the WinDriver
service (windrvr6.sys or your renamed driver [15.2], or there are connected and
enabled Plug-and-Play devices that are registered to work with this service, wdreg
will fail to uninstall the driver. This ensures that you do not uninstall the driver while
it is being used.

» You can check if the WinDriver kernel module is loaded by running the Debug
Monitor utility (WinDriver\util\wddebug_gui.exe) [6.2]. When the driver is loaded,
the Debug Monitor log displays driver and OS information; otherwise, it displays a
relevant error message. On the development PC, the uninstall command will delete
the Debug Monitor executables; to use this utility after the uninstallation, create a
copy of wddebug_gui.exe before performing the uninstall procedure.

5. If windrvr6.sys was successfully unloaded, erase the following files (if they exist):
* %windir % \system32\driver s\windrvr6.sys
* %windir% \inf\windrvr 6.inf
* %windir % \system32\wdapi1180.dll
* %windir % \sysWOW 64\wdapi1180.dIl (Windows x64)

6. Reboot the computer.

© 2015 Jungo Connectivity Ltd. 29 CONFIDENTIAL

Chapter 3. Installing WinDriver

3.5.2. Linux WinDriver Uninstall Instructions

The following commands must be executed with root privileges.

Verify that the WinDriver driver module is not being used by another program:

View the list of modules and the programs using each of them:
[sbin/lsnod

|dentify any applications and modules that are using the WinDriver driver module. (By
default, WinDriver module names begin with windrvr 6).

Close any applications that are using the WinDriver driver module.

If you created aKernel Plugln driver [11], unload the Kernel Plugln driver module:
[sbin/rmmod kp_xxx_nodul e

. Run the following command to unload the WinDriver driver module:

[sbi n/ nodprobe -r w ndrvr6
If you created a Kernel Pluglin driver, removeit aswell.

Remove the file .windriver.rc from the /etc directory:
#rm-f /etc/.windriver.rc

Removethefile .windriver.rc from $HOME:
#rm-f $HOVE/ .wi ndriver.rc

If you created a symbolic link to DriverWizard, remove the link using the command
rm-f /[usr/bin/wdw zard

Remove the WinDriver installation directory using the command
rm-rf <path to the WnDriver directory>
(forexample:# rm -rf ~/WnDri ver).

Remove the WinDriver shared object file, if it exists:
Jusr/lib/libwdapi1180.s0 (32-bit x86 or 32-bit PowerPC) /
Jusr /lib64/libwdapi1180.s0 (64-bit x86).

© 2015 Jungo Connectivity Ltd. 30 CONFIDENTIAL

Chapter 4
Using DriverWizard

This chapter describes the WinDriver DriverWizard utility and its hardware diagnostics and driver
code generation capabilities.

CardBus devices are handled via WinDriver's PCl API; therefore PCI referencesin this
chapter apply also to CardBus, on the operating systems on which it is supported [1.1].

4.1. An Overview

DriverWizard (included in the WinDriver toolkit) is agraphical user interface (GUI) tool that is
targeted at two major phases in the hardware and driver devel opment:

» Hardware diagnostics — DriverWizard enables you to write and read hardware resources
before writing asingle line of code. After the hardware has been built, insert your device into
the appropriate bus slot on your machine, view its resources — memory and 1/0 ranges, PCI
configuration registers, and interrupts — and verify the hardware's functionality by reading/
writing memory and 1/O addresses, defining and accessing custom registers, and listening to
interrupts.

» Code generation — Once you have verified that the device is operating to your satisfaction,
use DriverWizard generate skeletal driver source code with functions to view and access your
hardware's resources.

If you are developing a driver for adevice that is based on an enhanced-support PCI
chipset (PLX 6466, 9030, 9050, 9052, 9054, 9056, 9080 and 9656; Altera Qsys design;
Xilinx BMD design), we recommend that you first read Chapter 7: Enhanced Support for
Soecific Chipsets to understand your development options.

On Windows, DriverWizard can also be used to generate an INF file [15.1] for your hardware.
The code generated by DriverWizard is composed of the following elements:

» Library functionsfor accessing each element of your device's resources (memory ranges, 1/0
ranges, registers and interrupts).

» A 32-bit diagnostics program in console mode with which you can diagnose your device.
This application utilizes the special library functions described above. Use this diagnostics
program as your skeletal device driver.

© 2015 Jungo Connectivity Ltd. 31 CONFIDENTIAL

Chapter 4. Using DriverWizard

» A project solution that you can use to automatically load all of the project information and
filesinto your development environment.

For Linux, DriverWizard generates the required makefile.

4.2. DriverWizard Walkthrough

To use DriverWizard, follow these steps:

1. Attach your hardware to the computer:
Attach the card to the appropriate bus slot on your computer.
Alternatively, you have the option to use DriverWizard to generate code for a virtual PCI
device, without having the actual device installed, by selecting the PCI Virtual Device

DriverWizard option (see information in Step 2). When selecting this option, DriverWizard
will generate code for your virtual PCI device.

2. Run DriverWizard and select your device:

a. Start DriverWizard — <path to WinDriver >/wizar d/wdwizard. On Windows you
can also run DriverWizard from the Start menu: Start | Programs | WinDriver |
DriverWizard.

0 On Windows Vista and higher you must run DriverWizard as administrator.

b. Click New host driver project to start anew project, or Open an existing project to
open a saved session.

Figure4.1. Create or Open a Driver Project

Choose Your Project

dj
JUNGO

CONNECTIVITY

MNew host driver project | | Open an existing project

Cancel

© 2015 Jungo Connectivity Ltd. 32 CONFIDENTIAL

Chapter 4. Using DriverWizard

c. Select your Plug-and-Play card from the list of devices detected by DriverWizard.

Figure4.2. Select Your Plug-and-Play Device

Select Your Device

Please select your device from the detected devices below, or choose "ISA card™ for non Plug and Play cards.

Type Description Ve * [Refresh devices list]
PCL PCI Virtual Device | e ———— |
ISA: ISA Device ISA Device 5
ISA: Parallel Port ISA Device | Uninstall .INF file |
PCL: Intel - E7520 Memory Controller Hub Intel
PCL: Intel - E7520 Memory Controller Hub Intel £
PCL: Intel - E7520 DMA Controller Registers Intel
= PCI: Intel - E7525 PCI Express Port A Intel
PCI: Intel - 6700PXH PCI Express-to-PCI Express Bridge A Intel
PCL: Intel - 670xPXH IfOxAPIC Interrupt Controller Intel
i PEE Intel - 6700FXH PCI Express-to-PCI Express Bridge B Intel
: PLX - PCIRDK9054-LITE PCI Reference Design Kit for PLX PCI 9054
PCI: Intel - 6700PXH [/OxAPIC Interrupt Controller B Intel
PCL: Intel - E7525 PCI Express Fort B Intel
PCL: Intel - E7520 PCI Express Port C Intel
—- PCIL: Intel - 6300ESB Hub Interface to PCI-X Bridge Intel
PCI: Intel - 82541E] Gigabit Ethernet Controller Intel
PCL: Intel - 82541EI Gigabit Ethernet Controller Intel
=~ PCL: Intel - 6300ESB USB 1.1 UHCI Controller #1 Intel -
4 n 3

Device Description:

Hardware ID: Vendor 10b5, Device 5406
Location: Bus 3, Slot 2, Function 0
Driver: none

"Other PCI Bridge Device”™

FRETIRS

MNext > H Cancel

For non-Plug-and-Play cards, select | SA.
To generate code for a PCI device that is not currently attached to the computer, select
PCI Virtual Device.

When selecting the PCI Virtual Device option, DriverWizard allows you to define
the device's resources. By specifying the 1/0 and/or memory ranges, you may
further define run-time registers (the offsets are relative to BARS). In addition, the
IRQ must be specified if you want to generate code that acknowledges interrupts
viarun-time registers. Note, that the IRQ number and the size of the 1/0 and
memory ranges are irrelevant, since these will be automatically detected by
DriverWizard when you install a physical device.

3. Generate and install an INF file for your device [Windows]:
On the supported Windows operating systems, the driver for Plug-and-Play devices (such as
PCl and PCMCIA) isinstalled by installing an INF file for the device. DriverWizard enables
you to generate an INF file that registers your device to work with WinDriver (i.e., with the
windrvr6.sysdriver). The INF file generated by DriverWizard should later be distributed to
your Windows customers, and installed on their PCs.
The INF file that you generate in this step is also designed to enable DriverWizard to
diagnose your device on Windows (for example, when no driver isinstalled for your
PCI/PCMCIA device). Additional information concerning the need for an INF fileis
provided in Section 15.1.1.

© 2015 Jungo Connectivity Ltd. 33 CONFIDENTIAL

Chapter 4. Using DriverWizard

If you don't need to generate and install an INF file (e.g., if you are using DriverWizard
on Linux), skip this step.

To generate and install the INF file with DriverWizard, do the following:

a. Inthe Select Your Device screen (see Step 2), click the Generate .INF file button or
click Next.

b. DriverWizard will display information detected for your device— Vendor ID, Device
ID, Device Class, manufacturer name and device name — and allow you to modify this
information, as demonstrated in Figure 4.3 below.

Figure 4.3. DriverWizard INF File Information

e

Enter Information for INF File
Flease fill in the information below for your device.

This information will be incorparated into the INF file,
which WinCriver will generate for your device.

The information you specfy wil appear in the
Device Manager after the installation of the INF file.

Vendor ID: | 10b5 Device ID: | 5406
Manufacturer name: | PLY|

Device name: |PCI RDK2054-LITE PCI Reference Design Kit for PLX PCI 9054

Device Class: OTHER =

WinDriver's unigue Class.

Use this option for @ non-standard type of device.
WinDriver will set a new Class type for your device.

Automatically install the INF file.

Mote: This will replace any existing driver you may have for your device,

[MNext] ‘ Cancel |

¢. When you are done, click Next and choose the directory in which you wish to store the
generated INF file. DriverWizard will then automatically generate the INF file for you.

Y ou can choose to automatically install the INF file by checking the Automatically
Install the INF file option in the DriverWizard's INF generation dialogue.

© 2015 Jungo Connectivity Ltd. 34 CONFIDENTIAL

Chapter 4. Using DriverWizard

If the automatic INF file installation fails, DriverWizard will notify you and provide
manual installation instructions (refer also the manual INF file installation instructionsin
Section 15.1).

Handling of PCl Message-Signaled Interrupts (M SI) and Extended M essage-
Signaled Interrupts (M SI-X) requires specific configuration in the device's INF
file, as explained in Section 9.2.7.1 of the manual.

On Windows Vista and higher, if your hardware supports MSI or MSI-X, the
Support Message Signaled Interrupts option in the DriverWizard's INF
generation dialogue will be enabled and checked by default. When this option

is checked, the generated DriverWizard INF file for your device will include
support for MSI/MSI-X handling. However, when this option is not checked,

PCI interrupts will be handled using the legacy level-sensitive interrupts method,
regardless of whether the hardware and OS support MSI/MSI-X.

d. When the INF file installation compl etes, select and open your device from the list in the
Select Your Device screen.

4. Uninstall the INF file of your device [Windows]:
On Windows, you can use DriverWizard to uninstall a previously installed Plug-and-Play
(PCI/PCMCIA) device INF file. Thiswill unregister the device from its current driver and
delete the copy of the INF file in the Windows INF directory.

In order for WinDriver to correctly identify the resouces of a Plug-and-Play device
and communicate with it — including for the purpose of the DriverWizard device
diagnostics outlined in the next step — the deivce must be registered to work with
WinDriver viaan INF file (see Step 3).

"
1

If you do not wish to uninstall an INF file, skip this step.
To uninstall the INF file, do the following:
a. Inthe Select Your Device screen (see Step 2), click the Uninstall .INF file button.
b. Select the INF file to be removed.
5. Diagnose your device:
Before writing your device driver, it isimportant to make sure your hardware is working as
expected. Use DriverWizard to diagnose your hardware. All of your activity will be logged in
the DriverWizard log so that you may later analyze your tests:

a. Define and test your device's /0 and memory ranges, registers and interrupts:

» DriverWizard will automatically detect your Plug-and-Play hardware resources: 1/0
ranges, memory ranges, and interrupts.

© 2015 Jungo Connectivity Ltd. 35 CONFIDENTIAL

Chapter 4. Using DriverWizard

Figure 4.4. PCl Resources

[active Projects & x|

PLX - PCI RDK9054-LITE PCI Reference Design Kit for PLX PCI 9054

K9054-LITE PCI Reference Design Kit for PLX PCI 9054 | ol »

=1~ Interrupt
Int
- 1j0

For non-Plug-and-Play hardware, define your hardware's resources manually.

On Windows 7 and higher, you may need to register an IRQ with WinDriver
before you can assign it to your non-Plug-and-Play hardware [9.2.3].

Y ou can also manually define hardware registers, as demonstrated in Figure 4.5
below.

Figure 4.5. Define Registers

Register Information

Mame

Register()| Auto Read
Resource Name Access Mode
BARD |=| Readjwrite |]
Offzet Size

0 32 it =

[QK l | Cancel |

. When defining registers, you may check the Auto Read box in the Register
Information window. Registers marked as Auto Read will automatically be
read for any register read/write operation performed from DriverWizard. The
read results will be displayed in the wizard's Log window.

* Read and write to the 1/0 ports, memory space and your defined registers, as
demonstrated in Figure 4.6.

. When accessing memory mapped ranges, be aware that Linux Power PC uses
big-endian for handling memory storage, as opposed to the PCI bus that uses
little-endian. For more information regarding little/big-endian issues, refer to
Section 9.3.

© 2015 Jungo Connectivity Ltd. 36 CONFIDENTIAL

Chapter 4. Using DriverWizard

Figure 4.6. Read/Write Memory and I/O

Offset (hex) Action

o (R
Size

et]
Data

00000000

* 'Listen’ to your hardware's interrupts.
Figure4.7. Listen to Interrupts

Active Projects & x|

Int: Interrupt Number 5, Level Sensitive

K9054-LITE PCI Reference Design Kit for PLX PCI 9054 | ol » ‘

[=}- PLX - PCI RDK9054-LITE PCI Reference Design Kit for
=)+ Interrupt

=-1/0
BAR1
=} Memory
BAR3
BARZ

Add Transfer Remove Transfer || .
[Qﬂﬂ—mandncﬂﬂ—mandnmt&n to Interru@

Access Reqister Command Data

BARD
Configuration Space

For level-sensitive interrupts, such aslegacy PCI interrupts, you must use
DriverWizard to define the interrupt status register and assign the read/write
command(s) for acknowledging (clearing) the interrupt, before attempting to
listen to the interrupts with the wizard, otherwise the OS may hang! Figure 4.8
below demonstrates how to define an interrupt acknowledgment command

for adefined | NTCSR hardware register. Note, however, that interrupt
acknowledgment information is hardware-specific.

Figure 4.8. Define Transfer Commandsfor Level-Sensitive I nterrupts

[Active Projects & x|

<9054 TE PCI Reference Design Kit for PLXPCT 9054 | ¢ -
Register Information
=} PLX - PCI RDK9054-LITE PCI Reference Design Kit for|
- & Intengt AccessRegister Command Date [[ggme il o s
INTCSR Auto Read
Resource Name Access Made 5 Memory (R
BARD [=] [Readwrite [~] INTCSR =]
Offset Size Conto Uﬂ 5 ez
onfiguraton Space
3 26t [v] rte [=]
Data
oo] B
Define the interrupt status register [T [concel

Define the transfer command(s) for acknowledging (clearing) the level-sensitive interrupt

6. Generatethe skeletal driver code:

a. Select to generate code either viathe Gener ate Code toolbar icon or from the Project |
Generate Code menu.

© 2015 Jungo Connectivity Ltd. 37 CONFIDENTIAL

Chapter 4. Using DriverWizard

b. In the Select Code Generation Options dialogue box that will appear, you may
optionally select to generate additional customized code for one of the supported
devices[7]; then choose the code language and development environment(s) for the
generated code and select Next to generate the code.

Figure 4.9. Code Generation Options

Select Code Generation Options

Add device-specific customization (optional):

Mo customization

Select the code-generation language:

ANSI C

Select your target development environments:

[7] M5 Developer Studio
[[] Ms Developer Studia
[7] M5 Developer Studio
[[] Ms Developer Studia
[7] M5 Developer Studio
[[] Ms Developer Studia
[7] M5 Developer Studio
[[] Ms Developer Studia
[7] M5 Developer Studio
[[] Ms Developer Studia
[7] M5 Developer Studio
[[] Ms Developer Studia

[] windows GCC - MinGW and Cygwin (for AMDG4)

[[] Windows GCC - MinGW and Cygwin {for x86)

JNET 2005 (for X86)

NET 2005 (for AMDE4)

.NET 2005 (for Windows Mobile 5)
.NET 2008 (for X86)

NET 2008 (for AMDE4)

NET 2008 (for Windows Mabile 5)
JNET 2010 (for X86)

NET 2010 (for AMDE4)

JNET 2012 (for X86)

NET 2012 (for AMDE4)

NET 2013 (for X86)

NET 2013 (for AMDE4)

[] Microsoft eMbdedded Visual C++ - for CE
[] Microsaft Platform Builder C++ - for CE
[Linux Makefile

IDE to Invoke:

Mone E

c. Click Next and select whether to handle handle Plug-and-Play and power management
events from within your driver code, whether to generate Kernel Pluglin code [11] (and
what type of related application to create), and whether to build your project's library as a
DLL (for MSVisua Studio Windows projects).

Figure 4.10. Additional Driver Options

Select Additional Options

Please mark additional options for your driver

iPlug and Play notifications
Power Management notifications
F Kernel PlugIn (for advanced users)
Windows users must have WDK installed in arder to compile.
[] 32-bit application with a 54-bit Kernel FlugIn

K] [Cancel

© 2015 Jungo Connectivity Ltd. 38 CONFIDENTIAL

Chapter 4. Using DriverWizard

Kernel Plugln Windows Project Notes

» To compile the generated Kernel Plugln code, the Windows Driver Kit (WDK)
must be installed.

» To successfully build aKernel Plugln project using MS Visual Studio, the path
to the project directory must not contain any spaces.

d. Save your project (if required) and click OK to open your devel opment environment
with the generated driver.

7. Compileand run the generated code:

» Usethis code as a starting point for your device driver. Modify where needed to perform
your driver's specific functionality.

» The source code DriverWizard creates can be compiled with any 32-bit compiler, and will
run on all supported platforms without modification.

For detailed compilation instructions, refer to Section 4.2.2.

4.2.1. Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs according to your
specifications, you are ready to write your driver.

4.2.1.1. Generating the Code

Generate code by selecting this option either via DriverWizard's Gener ate Code toolbar icon

or from the wizard's Project | Generate Code menu (see Section 4.2, Step 6). DriverWizard
will generate the source code for your driver, and save it together with the wizard driver-project
file (xxx.wdp, where "xxx" is the project name). The files are saved in a directory DriverWizard
creates for every development environment and operating system selected in the code generation
dialogue.

4.2.1.2. The Generated PCI/PCMCIA/ISA C Code

In the source code directory you now have anew xxx_lib.h file, which contains type definitions
and functions declarations for the API created for you by the DriverWizard, and an xxx_lib.c
source file, which contains the implementation of the generated device-specific API.

In addition, you will find an xxx_diag.c source file, which includes amai n() function and
implements a sample diagnostics application that utilizes the generated DriverWizard APl to
communicate with your device.

© 2015 Jungo Connectivity Ltd. 39 CONFIDENTIAL

Chapter 4. Using DriverWizard

The code generated by DriverWizard is composed of the following elements and files, where xxx
represents your DriverWizard project name:

 Library functions for accessing each element of your card's resources (memory ranges and 1/0,
registers and interrupts):

o XxXxX_lib.c — the implementation of the hardware-specific API (declared in xxx_lib.h), using
the WinDriver Card (WDC) API [B.2].

* xxx_lib.h — aheader file that contains type definitions and function declarations for the AP
implemented in the xxx_lib.c sourcefile.
Y ou should include this file in your source code to use the API generated by DriverWizard
for your device.

A diagnostics program that utilizes the generated DriverWizard API (declared in xxx_lib.h) to
communicate with your device(s):

» xxx_diag.c The source code of the generated diagnostics console application.
Use this diagnostics program as your skeletal device driver.

» Alist of al files created can be found at xxx_files.txt.
After creating your code, compile it with your favorite compiler, and see it work!

Change the function mai n() of the program so that the functionality suits your needs.
4.2.2. Compiling the Generated Code

4.2.2.1. Windows and Windows CE Compilation

As explained above, on Windows you can select to generate project, solution, and make files for
the supported compilers and development environments — M S Visual Studio, Windows GCC
(MinGW/Cygwin), MS eMbedded Visual C++, or MS Platform Builder.

For integrated devel opment environments (IDES), such as MS Visua Studio, you can also select
to automatically invoke your selected IDE from the wizard. Y ou can then proceed to immediately
build and run the code from your selected IDE.

Y ou can also build the generated code using any other compiler or devel opment environment that
supports the selected code language and target OS. Simply create a new project or make file for
your selected compiler/environment, include the generated source files, and run the code.

» For Windows, the generated compiler/environment files are located under an x86
directory — for 32-bit projects — or an amd64 directory — for 64-bit projects.

» For Windows CE, note that the generated Windows M obile code is targeted at the
Windows Mobile 5.0/6.0 ARMV4I SDK.

© 2015 Jungo Connectivity Ltd. 40 CONFIDENTIAL

Chapter 4. Using DriverWizard

o To build aKernel Plugin project (on Windows), follow the instructionsin Section 12.7.1.

4.2.2.2. Linux Compilation

Use the makefile that was created for you by DriverWizard in order to build the generated code
using your favorite compiler, preferably GCC.

G To build aKernel Plugin project, follow the instructionsin Section 12.7.2.

© 2015 Jungo Connectivity Ltd. 41 CONFIDENTIAL

Chapter 5
Developing a Driver

This chapter takes you through the WinDriver driver development cycle.

5.1. Using DriverWizard to Build a Device
Driver

» Use DriverWizard to diagnose your device and verify that it operates as expected: Read/write
the I/O and memory ranges, view the PCI configuration registers, define and access custom
registers, and listen to interrupts.

» Use DriverWizard to generate skeletal code for your devicein C or C#. For more information
about DriverWizard, refer to Chapter 4.

If you are using an enhanced-support PCI device (PLX 6466, 9030, 9050, 9052, 9054,
9056, 9080 and 9656; Altera Qsys design; Xilinx BMD design), you may want to use
the related WinDriver sample as the basis for your development instead of generating
code with DriverWizard. Note that for devices based on the Altera Qsys design or Xilinx
BMD design, you can use DriverWizard to generate customized device-specific code,
which utilizes the enhanced-support sample APIs. For additional information, refer to
Chapter 7: Enhanced Support for Specific Chipsets.

* Useany Cor .NET compiler or devel opment environment (depending on the code you created)
to build the skeletal driver you need.
WinDriver provides specific support for the following environments and compilers: MS Visual
Studio, MS eMbedded Visua C++, MS Platform Builder C++, GCC, Windows GCC

That isal you need to do in order to create your user-mode driver.

If you discover that better performance is needed, refer to Chapter 10.

For a detailed description of WinDriver's PCI/ISA/CardBus API, refer to Appendix B.

To learn how to perform operations that DriverWizard cannot automate, refer to Chapter 9.

© 2015 Jungo Connectivity Ltd. 42 CONFIDENTIAL

Chapter 5. Developing a Driver

5.2. Writing the Device Driver Without
DriverWizard

There may be times when you choose to write your driver directly, without using DriverWizard.
In such cases, either follow the steps outlined in this section to create a new driver project, or
select aWinDriver sample that most closely resembles your target driver and modify it to suit
your specific requirements.

5.2.1. Include the Required WinDriver Files

1. Include the relevant WinDriver header filesin your driver project.
All header files are found under the WinDriver/include directory.

All WinDriver projects require the windrvr.h header file.
When using the WDC_xxx API [B.2], include the wdc_lib.h and wdc_defs. header files
(these files already include windrvr .h).

Include any other header file that provides APIs that you wish to use from your code (e.g.,
filesfrom the WinDriver/samples/shared directory, which provide convenient diagnostics
functions.)

2. Include the relevant header files from your source code: For example, to use API from the
windrvr.h header file, add the following line to the code:

#i ncl ude "w ndrvr.h"
3. Link your code with the WDAPI library (Windows) / shared object (Linux):

» For Windows. WinDriver\lib\<sCPU>\wdapi1180.lib, where the <CPU> directory is
either x86 (32-bit binaries for x86 platforms), amd64 (64-bit binaries for x64 platforms),
or amd64\x86 (32-bit binaries for x64 platforms[A.2]

» For Windows CE: WinDriver\lib\WINCE\<CPU>\wdapi1180.lib

* For Linux: From the WinDriver/lib directory — libwdapi1180.s0 or libwdapi1180 32.s0
(for 32-bit applications targeted at 64-bit platforms)
Note: When using libwdapi1180 32.so, first create a copy of thisfilein adifferent
directory and rename it to libwdapi1180.s0, then link your code with the renamed
file[A.2].

Y ou can also include the library's source files in your project instead of linking the project
with the library. The C source files are located under the WinDriver/sr c/wdapi directory.

© 2015 Jungo Connectivity Ltd. 43 CONFIDENTIAL

Chapter 5. Developing a Driver

4.

When linking your project with the WDAPI library/framework/shared object, you will
need to distribute this binary with your driver.

For Windows, get wdapi1180.dIl / wdapi1180_32.dIl (for 32-bit applications targeted
at 64-hit platforms) from the WinDriver\redist directory.

For Linux, get libwdapi1180.so / libwdapi1180_32.so (for 32-bit applications targeted
at 64-hit platforms) from the WinDriver/lib directory.

Note: On Windows and Linux, when using the DLL/shared object file for 32-bit applications
on 64-bit platforms (wdapi1180 32.dll / libwdapi1180_32.s0), rename the copy of thefilein
the distribution package, by removing the _32 portion [A.2].

For detailed distribution instructions, refer to Chapter 14.

Add any other WinDriver source files that implement API that you which to use in your code
(e.g., filesfrom the WinDriver/samples/shared directory.)

5.2.2. Write Your Code

This section outlines the calling sequence when using the WDC _xxx API [B.2].

1

Call WbC_Dr i ver Open() [B.3.2] to open ahandle to WinDriver and the WDC library,
compare the version of the loaded driver with that of your driver source files, and register
your WinDriver license (for registered users).

. For PCI/CardBus/PCMCIA devices, call WDC _Pci ScanDevi ces() [B.3.4] /

WDC Pcnti aScanDevi ces() [B.3.7] to scan the PCI/PCMCIA bus and |ocate your
device.

. For PCI/CardBus/PCMCIA devices, call WDC_Pci Get Devi cel nf o() [B.3.10] /

WDC_Pcnti aGet Devi cel nf o() [B.3.11] to retrieve the resources information for your
selected device.
For ISA devices, define the resources yourself within a\AD_CARD structure.

. Call WDC_Pci Devi ceOpen() [B.3.12] / WDC_Pcnti aDevi ceOpen() [B.3.13] /

WDC | saDevi ceOpen() [B.3.14] (depending on your device), and pass to the function the
device's resources information. These functions return a handle to the device, which you can
later use to communicate with the device using the WDC_xxx API.

. Communicate with the device using the WDC_xxx API (see the description in Appendix B).

To enable interrupts, call WDC_| nt Enabl e() [B.3.48].
To register to receive notifications for Plug-and-Play and power management events, call
WDC_Event Regi st er () [B.3.51].

. When you are done, call WDC _| nt Di sabl e() [B.3.49] to disable interrupt handling (if

previously enabled), call WDC _Event Regi st er () [B.3.51] to unregister Plug-and-Play
and power management event handling (if previously registered), and then call
WDC Pci Devi ceCd ose() [B.3.15] / WDC _Pcnti aDevi ceC ose() [B.3.16] /

© 2015 Jungo Connectivity Ltd. 44 CONFIDENTIAL

Chapter 5. Developing a Driver

WDC | saDevi ceC ose() [B.3.17] (depending on your device) in order to close the handle
to the device.

7. Cal WDC _Dri ver C ose() [B.3.3] to close the handles to WinDriver and the WDC library.

5.2.3. Configure and Build Your Code

After including the required files and writing your code, make sure that the required build flags
and environment variables are set, then build your code.

_ When developing a driver for a 64-bit platform [A], your project or makefile must include

U the KERNEL_64BI T preprocessor definition. In the makefiles, the definition is added using
the - Dflag: - DKERNEL _64BI T. (The sample and wizard-generated Linux and Windows
GCC makefiles and the Windows M S Visual Studio projects, in the 64-bit WinDriver
toolkit, already include this definition.)

, Beforebuilding your code, verify that the WD_BASEDI R environment variable is set to the
location of the of the WinDriver installation directory.
On Windows, Windows CE, and Linux you can define the WD_BASEDI R environment
variable globally — as explained in Chapter 3: For Windows — refer to the Windows
WD_BASEDIR note in Section 3.2.1; for Windows CE — refer to Section 3.2.2.3; for
Linux: refer to Section 3.2.3.2, Step 8.

© 2015 Jungo Connectivity Ltd. 45 CONFIDENTIAL

Chapter 5. Developing a Driver

5.3. Developing Your Driver on Windows CE
Platforms

To use WinDriver to handle a Plug-and-Play device, you must first register the device with the
WinDriver kernel module (windrvr6.dll).

To register the device with WinDriver, modify the registry to identify the device by its

class (<CLASS>), subclass (< SUBCLASS>), vendor ID (<VENDOR_ID>), and device ID
(<DEVICE_ID>) — as hexadecimal values— and link the device to windrvr6.dll. The registry
can be modified by adding the relevant information to your project.reg file, as demonstrated
below:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ PCI \ Tenpl at e\ WDCar d]
"Prefix"="VWDR'
"Dil"="windrvr6.dlI"

"d ass" =dwor d: <CLASS>

"Subd ass" =dwor d: <SUBCLASS>
"Order"=dword: ff

"Vendor | D' =dwor d: <VENDOR _| D>
"Devi cel D'=dwor d: <DEVI CE_| D>
“lsrDI"="giisr.dl|"

"1 srHandl er"="1SRHandl| er"
"Wl nt Enh" =dwor d: O

., For information about the Wil nt Enh registry setting and interrupt latency, see
W section9.29.1

For more information about the relevant registry settings, refer to PCl Bus Driver Registry
Settingsin the MSDN Library.

© 2015 Jungo Connectivity Ltd. 46 CONFIDENTIAL

Chapter 6
Debugging Drivers

The following sections describe how to debug your hardware-access application code.

6.1. User-Mode Debugging

» Since WinDriver is accessed from the user mode, we recommend that you first debug your
code using your standard debugging software.

» The Debug Monitor utility [6.2] logs debug messages from WinDriver's kernel-mode and user-
mode APIs. You can also use WinDriver APIsto send your own debug messages to the Debug
Monitor log.

* When using WinDriver's APl (suchasWD_Tr ansf er () — seethe WinDriver PCI
Low-Level APl Reference), to read/write memory ranges on the card in the kernel, while the
Debug Monitor [6.2] is activated, WinDriver's kernel module validates the memory ranges,

i.e., it verifies that the reading/writing from/to the memory isin the range that is defined for the
card.

» Use DriverWizard to check values of memory and registers in the debugging process.

6.2. Debug Monitor

Debug Monitor is a powerful graphical- and console-mode tool for monitoring all activities
handled by the WinDriver kernel.

Y ou can use this tool to monitor how each command sent to the kernel is executed.

In addition, WinDriver enables you to print your own debug messages to the Debug Monitor,
using the WD_DebugAdd() function (described in the WinDriver PCI Low-Level API
Reference) or the high-level Pri nt DbogMessage() function [B.8.14].

The Debug Monitor comes in two versions:

» wddebug _gui [6.2.1] — a GUI version for Windows and Linux.

» wddebug [6.2.2] — a console-mode version for Windows, Windows CE, and Linux; on
Windows CE, wddebug also supports GUI execution.

Both Debug Monitor versions are provided in the WinDriver/util directory.

© 2015 Jungo Connectivity Ltd. 47 CONFIDENTIAL

Chapter 6. Debugging Drivers

6.2.1. The wddebug_gui Utility

wddebug_gui isafully graphical (GUI) version of the Debug Monitor utility for Windows and
Linux.

1. Run the Debug Monitor using either of the following methods:
* Run WinDriver/util/wddebug_gui.
* Run the Debug Monitor from DriverWizard's T ools menu.
* OnWindows, run Start | Programs | WinDriver | Debug Monitor.

Figure6.1. Start Debug Monitor

DWinDriver Debug Monitor = | Bl S
File Edit Wiew Help

SBeln O

WinDriver Debug Monitor v11.7.0.

Running WinDriver v11.7.0 Jungo Connectivity (c) 1997 - 2014 Build Date: Oct 19 2014 x86_64 64bit 5Y5 16:22:45
05 Windows MT 6. 1 Build 0.0,7601 Service Pack 1

Time: Maon Oct 20 13:06:46 2014

2. Set the Debug Monitor's status, trace level and debug sections information from the Debug
Options dialogue, which is activated either from the Debug Monitor's View | Debug Options
menu or the Debug Options toolbar button.

© 2015 Jungo Connectivity Ltd. 48 CONFIDENTIAL

Chapter 6. Debugging Drivers

Figure 6.2. Debug Options

Debug Options

Section
¥ 1f0 ¥| PrP
| Memary V| Kernel Plugln
| Interrupts

Status P | Miscellaneous
¥ | PCI
V| PCMCIA

| Card Registration
Off | 7| 1SA PnP ?

7] usa | Kernel Driver
7| DMA | Events
| All Sections

Level

Error Warn Info @ Trace

Send debug messages to the operating system kernel debugger

oK l | Cancel

» Status— Set trace on or off.
» Section — Choose what part of the WinDriver APl you would like to monitor.

For example, if you are experiencing problems with the interrupt handler on your PCI card,
select the PCI and I nterrupts sections.

) Choose carefully those sections that you would like to monitor. Checking more
- options than necessary could result in an overflow of information, making it harder
for you to locate your problem.

» Level — Choose the level of messages you want to see for the resources defined.
« Error isthe lowest trace level, resulting in minimum output to the screen.

« Traceisthe highest trace level, displaying every operation the WinDriver kernel
performs.

* Send debug messages to the oper ating system kernel debugger —

Select this option to send the debug messages received from the WinDriver kernel module
to an external kernel debugger, in addition to the Debug Monitor.

© 2015 Jungo Connectivity Ltd. 49 CONFIDENTIAL

Chapter 6. Debugging Drivers

On Windows Vista and higher, the first time that you enable this option you will
need to restart the PC.

A free Windows kernel debugger, WinDbg, is distributed with the Windows Driver
- Kit (WDK) and is part of the Debugging Tools for Windows package, distributed via
the Microsoft web site.

3. Once you have defined what you want to trace and on what level, click OK to close the
Debug Options window.

4. Optionally make additional configurations via the Debug Monitor menus and toolbar.

©) When debugging OS crashes or hangs, it's useful to auto-save the Debug Monitor log,
- viathe File— Toggle Auto-Save menu option (available also viaatoolbar icon), in
addition to sending the debug messages to the OS kernel debugger (see Step 2).

5. Run your application (step-by-step or in one run).

&) Y ou can use the Edit = Add Custom M essage... menu option (available also viaa
- toolbar icon) to add custom messages to the log. Thisis especialy useful for clearly
marking different execution sectionsin the log.

6. Watch the Debug Monitor log (or the kernel debugger log, if enabled) for errors or any
unexpected messages.

6.2.1.1. Running wddebug_gui for a Renamed Driver

By default, wddebug_gui logs messages from the default WinDriver kernel module —
windrvr6.sys/.o/.ko. However, you can also use wddebug_gui to log debug messages from a
renamed version of thisdriver [15.2], by running wddebug_gui from the command line with the
dri ver _name argument: wddebug_gui <dri ver _nane>.

The driver name should be set to the name of the driver file without the file's extension;

I e.g., windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

For example, if you have renamed the default windrvr 6.sys driver on Windows to
my_driver.sys, you can log messages from your driver by running the Debug Monitor using the
following command: wddebug_gui ny_dri ver

6.2.2. The wddebug Utility

6.2.2.1. Console-Mode wddebug Execution

The wddebug version of the Debug Monitor utility can be executed as a console-mode
application on al supported operating systems: Windows, Windows CE, and Linux. To usethe

© 2015 Jungo Connectivity Ltd. 50 CONFIDENTIAL

Chapter 6. Debugging Drivers

console-mode Debug Monitor version, run WinDriver/util/wddebug in the manner explained
below.

For console-mode execution on Windows CE, start a command window (CM D.EXE) on
the Windows CE target, and then run the program WDDEBUG.EXE inside this shell.
Y ou can aso execute wddebug viathe Windows CE GUI, as explained in Section 6.2.2.2.

wddebug console-mode usage

wddebug [<driver_name>] [<command>] [<level>] [<sections>]

The wddebug arguments must be provided in the order in which they appear in the usage
statement above.

* <dri ver _name>— The name of the driver to which to apply the command.

The driver name should be set to the name of the WinDriver kernel module — windrvr 6
(default), or arenamed version of this driver (refer to the explanation in Section 15.2).

The driver name should be set to the name of the driver file without the file's extension;

I for example, windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

» <conmmand> — The Debug Monitor command to execute:
= Activation commands:
* on — Turn the Debug Monitor on.
» of f — Turn the Debug Monitor off.

» dbg_on — Redirect the debug messages from the Debug Monitor to akernel debugger
and turn the Debug Monitor on (if it was not already turned on).

On Windows Vista and higher, the first time that you enable this option you will
need to restart the PC.

» dbg_of f — Stop redirecting debug messages from the Debug Monitor to a kernel
debugger.

Theon and dbg_on commands can be used together with the <l evel > and
<sect i ons> arguments.

« dunmp — Continuously send ("dump™) debug information to the command prompt, until the
user selectsto stop (by following the instructions displayed in the command prompt).

« St at us — Display information regarding the running driver (<dr i ver _nane>), the
current Debug Monitor status — including the active debug level and sections (when the
Debug Monitor is on) — and the size of the debug-messages buffer.

© 2015 Jungo Connectivity Ltd. 51 CONFIDENTIAL

Chapter 6. Debugging Drivers

« cl ock_on — Add atimestamp to each debug message. The timestamps are relative to the
driver-load time, or to the time of thelast cl ock_r eset command.

« cl ock_of f — Do not add timestamps to the debug messages.
« cl ock_reset — Reset the debug-messages timestamps clock.
« sect _i nf o_on — Add section(s) information to each debug message.
« sect i nfo_of f — Do not add section(s) information to the debug messages.
= hel p — Display usage instructions.
= No arguments (including no commands) — On platforms other than Windows CE, thisis
equivaent to running 'wddebug hel p'; on Windows CE, it activates the utility's Windows
CE GUI version, as explained in Section 6.2.2.2.
The following arguments are applicable only with the on or dbg_on commands:
» <| evel >— Thedebug trace level to set — one of the following flags: ERROR, WARN, | NFO,

or TRACE (default).
ERRCR isthe lowest trace level and TRACE is the highest level (displays all messages).

When the <sect i ons> argument is set, the <| evel > argument must be set as well
(no default).

» <secti ons>— The debug sections— i.e., the WinDriver APl sections— to monitor.
This argument can be set either to ALL (default) — to monitor all the supported debug sections
— or to aquoted string that contains a combination of any of the supported debug-section flags
(run‘'wddebug hel p'to seethefull list).

Usage Sequence
To log messages using wddebug, use the following sequence:

» Turn on the Debug Monitor by running wddebug with either the on or dbg_on command;
the latter redirects the debug messages to the OS kernel debugger before turning on the Debug
Monitor.

You can usethe<l| evel > and <sect i ons> arguments to set the debug level and sections
for the log. If these arguments are not explicitly set, the default values will be used; (note that if
you set the sections you must also set the level).

Y ou can aso log messages from arenamed WinDriver driver by preceding the command with
the name of the driver (default: windrvr6) — seethe <dr i ver _nane> argument.

© 2015 Jungo Connectivity Ltd. 52 CONFIDENTIAL

Chapter 6. Debugging Drivers

* If you did not select to redirect the debug messages to the OS kernel debugger (using the
dbg_on command), run wddebug with the dunp command to begin dumping debug
messages to the command prompt.

Y ou can turn off the display of the debug messages, at any time, by following the instructions
displayed in the command prompt.

* Run applications that use the driver, and view the debug messages as they are being logged to
the command prompt/the kernel debugger.

» At any time while the Debug Monitor is running, you can run wddebug with the following
commands:

« status,clock on,clock off,clock reset,sect _info_on,or
sect _info_off,

= on or dbg_on with different <I evel > and/or <sect i ons> arguments

« dbg_on anddbg_of f — to toggle the redirection of debug messages to the OS kernel
debugger

« dunp — to start anew dump of the debug log to the command prompt; (the dump can be
stopped at any time by following the instructions in the prompt)

» When you are ready, turn off the Debug Monitor by running wddebug with the of f command.

. The st at us command can be used to view information regarding the running
U WinDriver driver even when the Debug Monitor is off.
Example

The following is an example of atypical wddebug usage sequence. Since no <dr i ver _nane>
is set, the commands are applied to the default driver — windrvr6.

» Turn the Debug Monitor on with the highest trace level for al sections:
wddebug on TRACE ALL

, Thisisthe same asrunning ‘'wddebug on TRACE, because ALL isthe default
W csections> value

» Dump the debug messages continuously to the command prompt, until the user selects to stop:
wddebug dunp

» Usethedriver and view the debug messages in the command prompt.

» Turn the Debug Monitor off:
wddebug of f

© 2015 Jungo Connectivity Ltd. 53 CONFIDENTIAL

Chapter 6. Debugging Drivers

6.2.2.2. Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by running wddebug without any arguments.
This method is designed to enable debug logging on Windows CE platforms that do not have a
command-line prompt. On such platforms, you can activate debug logging by double-clicking
the wddebug executable; thisis equivalent to running the application with no arguments from a

command-line prompt.

When executing wddebug without arguments, the user isinformed, viaa GUI message box, that
log messages will be stored in a predetermined log file — wdlog.txt in the root Windows CE
directory — and is given the option to cancel or continue.

Figure 6.3. wddebug Windows CE Start Log M essage

=,

rwddebug

i Press OK to start logging debug messages.
\;) The messages will be saved to wdlog. tt in the root Windows CE directory,

oK Cancel

If the user selects to continue, debug logging isturned on with atrace level of TRACE and debug

sections AL L, and the Debug Monitor begins dumping debug messages to the wdlog.txt log
file. The user can stop the logging and turn off debug logging, at any time, via a dedicated GUI

message box.
Figure 6.4. wddebug Windows CE Stop L og M essage

=,

rwddebug

\]}) Press OK to stop logging

© 2015 Jungo Connectivity Ltd. 54 CONFIDENTIAL

Chapter 7
Enhanced Support for Specific

Chipsets

7.1. Overview

In addition to the standard WinDriver APIs and the DriverWizard code generation

capabilities described in this manual, which support development of driversfor any
PCI/ISA/PCMCIA/CardBus device, WinDriver features enhanced support for specific PCI
chipsets. This enhanced support includes custom APIs, customized code generation (for some of
the chipsets), and sample diagnostics code, which are al designed specifically for these chipsets.

WinDriver's enhanced support is currently available for the following PCI chipsets: PLX 6466,
9030, 9050, 9052, 9054, 9056, 9080 and 9656; Altera Qsys design; Xilinx BMD design.
Customized code generation is available for the Altera Qsys design and Xilinx BMD design
chipsets.

7.2. Developing a Driver Using the Enhanced
Chipset Support

When developing adriver for a device based on one of the enhanced-support chipsets [7.1],

you can use WinDriver's chipset-set specific support in the following manner: If your deviceis
based on the Altera Qsys design or Xilinx BMD design, you can generate customized code for
the device by selecting this option in the DriverWizard code generation options dialogue (see
Section 4.2, Step 6.b). Alternatively, or if you are using another enhanced-support device, follow
the steps below to use one the enhanced-support WinDriver samples as the starting point for your
devel opment:

1. Locate the sample diagnostics program for your device under the WinDriver/chip_vendor/
chip_namedirectory.

Most of the sample diagnostics programs are named xxx_diag and their source codeis
normally found under an xxx_diag subdirectory. The program's executable is found under a
subdirectory for your target operating system (e.g., WIN32 for Windows.)

2. Run the custom diagnostics program to diagnose your device and familiarize yourself with
the options provided by the sample program.

© 2015 Jungo Connectivity Ltd. 55 CONFIDENTIAL

Chapter 7. Enhanced Support for Specific Chipsets

3. Use the source code of the diagnostics program as your skeletal device driver and modify the
code, as needed, to suit your specific development needs. When modifying the code, you can
utilize the custom WinDriver API for your specific chip. The custom API istypically found
under the WinDriver/chip_vendor/lib directory.

4. If the user-mode driver application that you created by following the steps above contains
parts that require enhanced performance (e.g., an interrupt handler), you can move the
relevant portions of your code to a Kernel Plugin driver for optimal performance, as
explained in Chapter 11.

© 2015 Jungo Connectivity Ltd. 56 CONFIDENTIAL

Chapter 8
PCIl Express

8.1. PCIl Express Overview

The PCI Express (PCl e) bus architecture (formerly 3GIO or 3rd Generation 1/0) was introduced
by Intel, in partnership with other leading companies, including IBM, Dell, Compag, HP and
Microsoft, with the intention that it will become the prevailing standard for PC I/O in the yearsto
come.

PCI Express alows for larger bandwidth and higher scalability than the standard PCI 2.2 bus.

The standard PCI 2.2 busis designed as asingle parallel data bus through which all datais routed
at a set rate. The bus shares the bandwidth between al connected devices, without the ability to
prioritize between devices. The maximum bandwidth for this busis 132MB/s, which has to be
shared among all connected devices.

PCI Express consists of serial, point-to-point wired, individually clocked 'lanes, each lane
consisting of two pairs of data lines that can carry data upstream and downstream simultaneously
(full-duplex). The bus slots are connected to a switch that controls the data flow on the bus. A
connection between a PCl Express device and a PCl Express switch iscaled a'link'. Each link
is composed of one or more lanes. A link composed of asingle laneis called an x1 link; alink
composed of two lanesis called an x2 link; etc. PCI Express supports x1, x2, x4, X8, x12, x16,
and x32 link widths (lanes). The PCI Express architecture allows for a maximum bandwidth of
approximately 500MB/s per lane. Therefore, the maximum potential bandwidth of thisbusis
500MB/sfor x1, 1,000MB/s for x2, 2,000MB/s for x4, 4,000MB/s for x8, 6,000MB/s for x12,
and 8,000MB/sfor x16. These values provide a significant improvement over the maximum
132MB/s bandwidth of the standard 32-bit PCI bus. The increased bandwidth support makes PCI
Expressideal for the growing number of devices that require high bandwidth, such as hard drive
controllers, video streaming devices and networking cards.

The usage of a switch to control the data flow in the PCI Express bus, as explained above,
provides an improvement over a shared PCI bus, because each device essentially has direct access
to the bus, instead of multiple components having to share the bus. This allows each device to use
its full bandwidth capabilities without having to compete for the maximum bandwidth offered

by a single shared bus. Adding to this the lanes of traffic that each device has accessto in the

PCI Express bus, PCI Express truly allows for control of much more bandwidth than previous
PCI technologies. In addition, this architecture enables devices to communicate with each other
directly (peer-to-peer communication).

In addition, the PCI Express bus topology allows for centralized traffic-routing and resource-
management, as opposed to the shared bus topology. This enables PCI Express to support quality

© 2015 Jungo Connectivity Ltd. 57 CONFIDENTIAL

Chapter 8. PCI Express

of service (QoS): The PCI Express switch can prioritize packets, so that real-time streaming
packets (i.e., avideo stream or an audio stream) can take priority over packets that are not astime
critical.

Another main advantage of the PCI Expressisthat it is cost-efficient to manufacture when
compared to PCl and AGP dots or other new I/O bus solutions such as PCI-X.

PCI Express was designed to maintain complete hardware and software compatibility with the
existing PCI bus and PCI devices, despite the different architecture of these two buses.

As part of the backward compatibility with the PCI 2.2 bus, legacy PCI 2.2 devices can be
plugged into a PCl Express system viaa PCl Express-to-PCl bridge, which translates PCl Express
packets back into standard PCI 2.2 bus signals. This bridging can occur either on the motherboard
or on an external card.

8.2. WinDriver for PCI Express

WinDriver fully supports backward compatibility with the standard PCI features on PCI Express
boards. The wide support provided by WinDriver for the standard PCI bus — including arich
set of APIs, code samples and the graphical DriverWizard for hardware debugging and driver
code generation — is also applicable to PCl Express devices, which by design are backward
compatible with the legacy PCI bus.

Y ou can aso use WinDriver's PCI API to easily communicate with PCI devices connected to the
PC via PCI Express-to-PCl bridges and switches (e.g., the PLX 8111/8114 bridges or the PLX
8532 switch, respectively).

In addition, WinDriver provides you with a set of APIsfor easy accessto the PCl Express
extended configuration space on target platforms that support such access (e.g., Windows and
Linux) — see the description of the WDC_Pci ReadCf gXXX() and WDC_Pci Wi t eCf gXXX()
functionsin Sections B.3.29-B.3.36 of the present manual, or the description of the lower-level
WD _Pci Conf i gDunp() function in the WinDriver PCI Low-Level APl Reference.

On Linux and Windows Vista and higher, the WinDriver interrupt handling APIs also support
Message-Signaled Interrupts (MSI) and Extended Message-Signaled Interrupts (MSI-X), as
detailed in Section 9.2 of the manual.

WinDriver also features enhanced support for PCl Express cards that are based on the

Xilinx Bus Master DMA (BMD) design or the Altera Qsys design. The WinDriver
WinDriver/xilinx/lbmd_design and WinDriver/altera/qsys design directories each contain
library APIs and a sample user-mode diagnostic applications for communicating with the
respective device type, including DMA and MSI handling code. The Xilinx BMD directory also
contains sample Kernel Plugin driver code [11]. In addition, the DriverWizard can be used to
generate customized code for such cards [7].

© 2015 Jungo Connectivity Ltd. 58 CONFIDENTIAL

Chapter 9
Advanced Issues

This chapter covers advanced driver development issues and contains guidelines for using
WinDriver to perform tasks that cannot be fully automated by the DriverWizard.

Note that WinDriver's enhanced support for specific chipsets [7] includes custom APIs for
performing hardware-specific tasks like DMA and interrupt handling, thus freeing devel opers
of driversfor these chipsets from the need to implement the code for performing these tasks
themselves.

9.1. Performing Direct Memory Access (DMA)

This section describes how to use WinDriver to implement bus-master Direct Memory Access
(DMA) for devices capable of acting as bus masters. Such devices have aDMA controller, which
the driver should program directly.

DMA is acapability provided by some computer bus architectures, including PCI, PCMCIA
and CardBus, which allows data to be sent directly from an attached device to the memory on
the host, freeing the CPU from involvement with the data transfer and thus improving the host's
performance.

A DMA buffer can be allocated in two ways.
» Contiguous buffer — A contiguous block of memory is allocated.

» Scatter/Gather — The allocated buffer can be fragmented in the physical memory and does
not need to be allocated contiguously. The allocated physical memory blocks are mapped to a
contiguous buffer in the calling process's virtual address space, thus enabling easy accessto the
alocated physical memory blocks.

The programming of a device's DMA controller is hardware specific. Normally, you need to
program your device with the local address (on your device), the host address (the physical
memory address on your PC) and the transfer count (the size of the memory block to transfer),
and then set the register that initiates the transfer.

WinDriver provides you with API for implementing both contiguous-buffer DMA

and Scatter/Gather DMA (if supported by the hardware) — see the description of

WDC _DMVACont i gBuf Lock() [B.3.41], WbC_DMASGBuf Lock() [B.3.42], and
WDC_DMVABuUf Unl ock() [B.3.43]. (The lower-level WD_DMAXxxx API is described in the
WinDriver PCI Low-Level API Reference, but we recommend using the convenient wrapper
WDC_xxx API instead.)

© 2015 Jungo Connectivity Ltd. 59 CONFIDENTIAL

Chapter 9. Advanced Issues

The following sections include code samples that demonstrate how to use WinDriver to
implement Scatter/Gather DMA [9.1.1] and contiguous-buffer DMA [9.1.2], and an explanation
on how to preallocate contiguous DMA buffers on Windows [9.1.2.1].

» The sample routines demonstrate using either an interrupt mechanism or a polling
mechanism to determine DMA completion.

» The sample routines allocate a DMA buffer and enable DMA interrupts (if polling is
not used) and then free the buffer and disable the interrupts (if enabled) for each DMA
transfer. However, when you implement your actual DMA code, you can allocate DMA
buffer(s) once, at the beginning of your application, enable the DMA interrupts (if polling
is not used), then perform DMA transfers repeatedly, using the same buffer(s), and
disable the interrupts (if enabled) and free the buffer(s) only when your application no
longer needs to perform DMA.

9.1.1. Implementing Scatter/Gather DMA

Following is a sample routine that uses WinDriver's WDC API [B.2] to allocate a Scatter/Gather
DMA buffer and perform bus-master DMA transfers.

A more detailed example, which is specific to the enhanced support for PLX chipsets[7] can be
found in the WinDriver/plx/lib/plx_lib.c library file and WinDriver/plx/diag_lib/plx_diag_lib.c
diagnostics library file (which utilizes the pIx_lib.c DMA API).

BOOL DMARout i ne(WDC_DEVI CE_HANDLE hDev, DWORD dwBuf Si ze,

{

PVO D pBuf;
WD _DVA *pDma = NULL;
BOOL f Ret = FALSE;

/* Al'locate a user-node buffer for Scatter/ Gather DVA */
pBuf = nal | oc(dwBuf Si ze) ;
i f (!pBuf)

return FALSE;

/* Lock the DVA buffer and programthe DVA controller */
i f (!DVAOQpen(hDev, pBuf, u32Local Addr, dwBufSize, fToDev, &pDma))
goto Exit;

/* Enable DMA interrupts (if not polling) */
if (!'fPolling)
{
if (! MyDMAI nt errupt Enabl e(hDev, MyDmal nt Handl er, pDma))
goto Exit; /* Failed enabling DVA interrupts */

}

/* Flush the CPU caches (see docunentation of WDC _DMASyncCpu()) */
WDC_DMASyncCpu(pDma) ;

/* Start DMA - wite to the device to initiate the DVA transfer */
MyDMASt art (hDev, pDm);

/* Wait for the DVA transfer to conplete */
MyDMAWAI t For Conpl eti on(hDev, pDma, fPolling);

© 2015 Jungo Connectivity Ltd. 60 CONFIDENTIAL

Chapter 9. Advanced Issues

/* Flush the 1/0O caches (see docunentation of WDC DMASynclo()) */
WDC_DMASyncl o(pDnm) ;

f Ret = TRUE;
Exit:
DVAC ose(pDna, fPolling);
free(pBuf);
return fRet;

}

/* DMAQpen: Locks a Scatter/Gather DVA buffer */
BOOL DVACpen(WDC _DEVI CE_HANDLE hDev, PVA D pBuf, Ul NT32 u32Local Addr,
DWORD dwDMABUf Si ze, BOOL f ToDev, WD DVA **ppDma)

{
DWORD dwst at us, i ;
DWORD dwOpti ons = fToDev ? DMA TO DEVI CE : DVA FROM DEVI CE;
/* Lock a Scatter/Gather DVA buffer */
dwst at us = WDC_DVASGBUf Lock(hDev, pBuf, dwQOptions, dwDMABUf Size, ppDma);
i f (WD_STATUS_SUCCESS ! = dwsSt at us)
{
printf("Failed |ocking a Scatter/ Gather DVA buffer. Error Ox%x - %\n",
dwSt at us, Stat2Str(dwStatus));
return FALSE;
}
/* Programthe device's DVA registers for each physical page */
MyDVAPr ogr an{ (* ppDra) - >Page, (*ppDnm) - >dwPages, f ToDev);
return TRUE;
}

/* DMAC ose: Unl ocks a previously |ocked Scatter/Gather DVA buffer */
voi d DMACI ose(WD_DVA *pDnma, BOCOL fPol |ing)

{
/* Disable DVA interrupts (if not polling) */
if ('fPolling)
MyDMAI nt er r upt Di sabl e(hDev) ;
/* Unlock and free the DVA buffer */
WDC_DMABuUf Unl ock(pDnm) ;
}

What Should You Implement?

In the code sample above, it is up to you to implement the following My DMAXx X () routines,
according to your device's specification:

* MyDMAPr ogr am(): Program the device's DMA registers.
Refer the device's data sheet for the details.

« MyDMAS art (): Writeto the device to initiate DMA transfers.

© 2015 Jungo Connectivity Ltd. 61 CONFIDENTIAL

Chapter 9. Advanced Issues

 MyDMAI nt er r upt Enabl e() and MyDMAI nt er r upt Di sabl e(): Use
WDC | nt Enabl e() [B.3.48] and WDC | nt Di sabl e() [B.3.49] (respectively) to
enable/disable the software interrupts and write/read the relevant register(s) on the device in
order to physically enable/disable the hardware DMA interrupts (see Section 9.2 for details
regarding interrupt handling with WinDriver.)

« MyDMAWAI t For Conpl et i on(): Poll the device for completion or wait for "'DMA DONE"
interrupt.

When using the basic WD_xxx API (described in the WinDriver PCI Low-L evel

API Reference) to allocate a Scatter/Gather DMA buffer that is larger than 1IMB,

you need to set the DVA_LARGE BUFFERflag in the call to WD_DIVALock() and

allocate memory for the additional memory pages, as explained in the following FAQ:
http://www.jungo.com/st/support/windriver/windriver_fags/#dmal. However, when using
WDC _DIVASGBuUf Lock() [B.3.42] to allocate the DMA buffer, you do not need any special
implementation for allocating large buffers, since the function handles this for you.

9.1.2. Implementing Contiguous-Buffer DMA

Following is a sample routine that uses WinDriver's WDC API [B.2] to allocate a contiguous
DMA buffer and perform bus-master DMA transfers.

For more detailed, hardware-specific, contiguous DMA examples, refer to the following
enhanced-support chipset [7] sample library files:

* PLX — WinDriver/pIx/lib/plx_lib.c and WinDriver/plx/diag_lib/plx_diag_lib.c (which
utilizes the pIx_lib.c DMA API)

» Xilinx Bus Master DMA (BMD) design — WinDriver/xilinx/bmd_design/bmd_lib.c

BOOL DMARout i ne(WDC_DEVI CE_HANDLE hDev, DWORD dwDMABuf Si ze,

U NT32 u32Local Addr, DWORD dwOptions, BOOL fPolling, BOOL fToDev)
{

PVO D pBuf = NULL;

WD _DVA *pDma = NULL;

BOOL fRet = FALSE;

/* Allocate a DVA buffer and open DVA for the selected channel */
i f (!DVAQpen(hDev, &pBuf, u32Local Addr, dwDMABuUf Si ze, fToDev, &pDna))
goto Exit;

/* Enable DMA interrupts (if not polling) */
if (!'fPolling)
{
if (! MyDMAI nt errupt Enabl e(hDev, MyDmal nt Handl er, pDma))
goto Exit; /* Failed enabling DVA interrupts */

}

/* Flush the CPU caches (see docunentation of WDC _DMASyncCpu()) */
WDC_DMASyncCpu(pDma) ;

© 2015 Jungo Connectivity Ltd. 62 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/windriver_faqs/#dma1

Chapter 9. Advanced Issues

/* Start DVA - wite to the device to initiate the DVA transfer */
MyDVASt art (hDev, pDnm);

/* Wait for the DVA transfer to conplete */
MyDVAWAI t For Conpl eti on(hDev, pDma, fPolling);

/* Flush the 1/0O caches (see docunentation of WDC DMASynclo()) */
WDC_DVASyncl o(pDma) ;

fRet = TRUE;

Exit:
DVAC ose(pDma, fPolling);
return fRet;

}

/* DMAQpen: Allocates and | ocks a contiguous DVA buffer */
BOOL DVACpen(WDC _DEVI CE_HANDLE hDev, PVA D *ppBuf, U NT32 u32Local Addr,
DWORD dwDMABUf Si ze, BOOL f ToDev, WD DVA **ppDma)

{
DWORD dwst at us;
DWORD dw(ptions = fToDev ? DVA TO DEVI CE : DMA FROM DEVI CE;
/* Allocate and lock a contiguous DVA buffer */
dwSt at us = WDC_DMACont i gBuf Lock(hDev, ppBuf, dwOptions, dwDVABUfSi ze, ppDma);
i f (WD_STATUS_SUCCESS ! = dwsSt at us)
{
printf("Failed | ocking a contiguous DVA buffer. Error Ox%x - 9%\n",
dwSt at us, Stat2Str(dwStatus));
return FALSE;
}
/* Programthe device's DVA registers for the physical DVA page */
MyDVAPr ogr an{((* ppDra) - >Page, (*ppDnm) - >dwPages, f ToDev);
return TRUE;
}

/* DMAC ose: Frees a previously allocated contiguous DVA buffer */
voi d DMACI ose(WD_DVA *pDnma, BOCOL f Pol |ing)

{
/* Disable DVA interrupts (if not polling) */
if ('fPolling)
MyDMAI nt er r upt Di sabl e(hDev) ;
/* Unlock and free the DVA buffer */
WDC_DMABuUf Unl ock(pDnm) ;
}

What Should You Implement?

In the code sample above, it is up to you to implement the following My DMAX xx () routines,
according to your device's specification:

* MyDMAPr ogr am(): Program the device's DMA registers.
Refer the device's data sheet for the details.

© 2015 Jungo Connectivity Ltd. 63 CONFIDENTIAL

Chapter 9. Advanced Issues

« MyDMAST art (): Writeto the device to initiate DMA transfers.

 MyDMAI nt er r upt Enabl e() and MyDMAI nt er r upt Di sabl e(): Use
WDC _| nt Enabl e() [B.3.48] and WDC _| nt Di sabl e() [B.3.49] (respectively) to
enabl e/disable the software interrupts and write/read the relevant register(s) on the devicein
order to physically enable/disable the hardware DMA interrupts (see Section 9.2 for details
regarding interrupt handling with WinDriver.)

« MyDMAWAI t For Conpl et i on(): Poll the device for completion or wait for "'DMA DONE"
interrupt.

9.1.2.1. Preallocating Contiguous DMA Buffers on
Windows

WinDriver doesn't limit the size of the DMA buffer that can be allocated using its DMA APIs.
However, the success of the DMA alocation is dependent on the amount of available system
resources at the time of the allocation. Therefore, the earlier you try to allocate the buffer, the
better your chances of succeeding.

WinDriver for Windows allows you to configure your device INF file to preallocate contiguous
DMA buffers at boot time, thus increasing the odds that the allocation(s) will succeed.

Y ou may preallocate a maximum of either two unidirectional buffers— one host-to-device
buffer and/or one device-to-host buffer — or two bidirectional buffers.

To preallocate contiguous DMA buffers on Windows, follow these steps:

1. Add therequired configuration under the [Updat eRegi st r yDevi ce] registry key in
your device INF file, as shown below.

» The examples are for configuring preallocation of two DMA buffers (either
unidirectional or bidirectional, but you may, of-course, select to preallocate just one
buffer (or none at all).

» Thewizard-generated and relevant sample WinDriver device INF files already
contain the unidirectional buffers configuration lines, so you only need to remove
the comment indicator (*;") at the start of each line, and for bidirectional buffers also
change the DMA direction flag and edit the title comments (see below).

» To predllocate unidirectional buffers, add these lines:

; Host-to-device DVA buffer:

; HKR, , "DnmaToDevi ceByt es", 0x00010001, 0x100000 ; Buffer size, in bytes

; HKR, , " DmaToDevi ceOpti ons", 0x00010001, 0x41 ; DMVA flags (0x40=DVA TO DEVI CE
; + Ox1=DVA KERNEL BUFFER _ALLOC)

; Device-to-host DVA buffer:

; HKR, , " DmaFr onDevi ceByt es", 0x00010001, 0x100000 ; Buffer size, in bytes

; HKR, , " DmaFr onDevi ceOpt i ons", 0x00010001, 0x21 ; DMA flags (0x20=DMA_FROM DEVI CE
; + Ox1=DVA KERNEL BUFFER _ALLOC)

© 2015 Jungo Connectivity Ltd. 64 CONFIDENTIAL

Chapter 9. Advanced Issues

» To predllocate bidirectional buffers, add these lines:

; Bidirectional DVA buffer:

; HKR, , "DnaToDevi ceByt es", 0x00010001, 0x100000 ; Buffer size, in bytes

; HKR, , " DmaToDevi ceOpti ons", 0x00010001, 0x61 ; DVA flags (0Ox60=DVA_TO FROM DEVI CE
; + Ox1=DVA KERNEL BUFFER _ALLOC)

; Second bidirectional DVA buffer:

; HKR, , " DmaFr onDevi ceByt es", 0x00010001, 0x100000 ; Buffer size, in bytes

; HKR, , " DmaFr onDevi ceOpt i ons", 0x00010001, 0x61 ; DVA flags (0Ox60=DVA_TO FROM DEVI CE
; + Ox1=DVA KERNEL BUFFER _ALLOC)

». TheINF-file configuration for bidirectional buffers uses the same registry keys as for
unidirectional buffers (DmaToDevi ce XXX and DmaFr onDevi ceXXX), but the
DMA options key value (DnmaToDevi ceOQpt i ons / DmaFr onDevi ceOpt i ons)
should contain the DMA_TO_FROM DEVI CE flag (0x60) instead of the
unidirectional DVA_TO_DEVI CE (0x40) or DVA_FROM DEVI CE (0x20) flag.

2. Edit the buffer sizes and add flags to the options masks in the INF file, as needed.
Note, however, that the direction flags and the DMA_KERNEL _BUFFER_ALLOC flag must
be set as shown in Step 1.

The supported WinDriver DMA flags are documented in the description of dwOptions
field of the WD_DIVA struct [B.5.15]. To locate the relevant flag values to set in the INF
file, look for the flag definitions in the WinDriver\include\windrvr .h file; (look for
the enum that contains the DMA_KERNEL BUFFER_ALLCCflag).

3. Inyour code, thefirst call or the first two calls (if you configured the INF file
to preallocate two DMA buffers) to the contiguous-DMA-lock function —
WDC_DIVACont i gBuf Lock() [B.3.41] — should set parameter values that match the buffer
configurationsin the INF file:

» For adevice-to-host buffer or thefirst allocation of a bidirectional buffer, the DMA-
options mask parameter (dwOpt i ons) should contain the same DMA flags set in
the DmaFr onDevi ceOpt i ons registry key value, and the buffer-size parameter
(dwDMABuUTf Si ze) should be set to the value of the DmaFr onDevi ceByt es registry
key value.

* For ahost-to-device buffer or the second allocation of a bidirectional buffer,
the DM A-options mask parameter (dwOpt i ons) should contain the same flags set
inthe DmaToDevi ceOpt i ons registry key value, and the buffer-size parameter
(dwDMABUT Si ze) should be set to the value of the DmaToDevi ceByt es registry key
value.

© 2015 Jungo Connectivity Ltd. 65 CONFIDENTIAL

Chapter 9. Advanced Issues

* When using WDC_DMACont i gBuf Lock() [B.3.41] you don't need to explicitly
set the DVMA_ KERNEL _BUFFER_ALLOCflag (which must be set in the INF-file
configuration) because the function sets this flag automatically.

» When using the low-level WinDriver WO_DMALock () function (described in
the WinDriver PCI Low-Level API Reference), the DMA options are set
in the function's pDma- >dwOpt | ons parameter — which must also include
the DVA_KERNEL_BUFFER_ALLCOC flag — and the buffer sizeis set in the
pDma- >dwByt es parameter.

* If the buffer preallocation fails due to insufficient resources, you may
need to increase the size of the non-paged pool (from which the memory
isallocated), as explained in WinDriver Technical Document 58
(http://www.jungo.com/st/support/tech_docs/td58.html).

9.2. Handling Interrupts

WinDriver provides you with API, DriverWizard code generation, and samples, to simplify the
task of handling interrupts from your driver.

If you are developing adriver for adevice based on one of the enhanced-support WinDriver
chipsets [7], we recommend that you use the custom WinDriver interrupt APIs for your specific
chip in order to handle the interrupts, since these routines are implemented specifically for the
target hardware.

For other chips, we recommend that you use DriverWizard to detect/define the relevant
information regarding the device interrupt (such as the interrupt request (IRQ) number, its type
and its shared state), define commands to be executed in the kernel when an interrupt occurs
(if required), and then generate skeletal diagnostics code, which includes interrupt routines
that demonstrate how to use WinDriver's API to handle your device's interrupts, based on the
information that you defined in the wizard.

The following sections provide a general overview of PCI/PCMCIA/ISA interrupt handling and
explain how to handle interrupts using WinDriver's API. Use thisinformation to understand the
sample and generated DriverWizard interrupt code or to write your own interrupt handler.

9.2.1. Interrupt Handling — Overview

PCI, PCMIA and ISA hardware uses interrupts to signal the host.
There are two main methods of PCI interrupt handling:

» Legacy Interrupts: Thetraditional interrupt handling, which uses aline-based mechanism. In
this method, interrupts are signaled by using one or more external pins that are wired "out-of-
band", i.e., separately from the main bus lines.

© 2015 Jungo Connectivity Ltd. 66 CONFIDENTIAL

http://www.jungo.com/st/support/tech_docs/td58.html

Chapter 9. Advanced Issues

Legacy interrupts are divided into two groups:

* Level-sensitiveinterrupts: Theseinterrupts are generated as long as the physical interrupt
signal ishigh. If the interrupt signal is not lowered by the end of the interrupt handling in the
kernel, the operating system will call the kernel interrupt handler repeatedly causing the host
platform to hang. To prevent such a situation, the interrupt must be acknowledged (cleared)
by the kernel interrupt handler immediately when it is received.

Legacy PCI interrupts are level sensitive.

» Edge-triggered interrupts. These are interrupts that are generated once, when the physical
interrupt signal goes from low to high. Therefore, exactly one interrupt is generated. No
special action isrequired in order to acknowledge this type of interrupt.
|SA/EISA interrupts are edge triggered.

* MSI/MSI-X: Newer PCI bus technologies, available beginning with v2.2 of the PCI bus and
in PCl Express, support Message-Signaled Interrupts (M SI). This method uses "in-band"”
messages instead of pins and can target addresses in the host bridge. A PCI function can
request up to 32 MSlI messages.

Note: MSI and MSI-X are edge triggered and do not require acknowledgment in the kernel.

Among the advantages of MSIs:

» MSIs can send data along with the interrupt message.

» Asopposed to legacy PCI interrupts, MSIs are not shared, i.e., an M S| that isassigned to a
device is guaranteed to be unigue within the system.

Extended Message-Signaled Interrupts (M Sl -X) are available beginning with version 3.0 of the
PCI bus. This method provides an enhanced version of the MSI mechanism, which includes the
following advantages.

» Supports 2,048 messages instead of 32 messages supported by the standard M SI.

 Supports independent message address and message data for each message.

» Supports per-message masking.

» Enables more flexibility when software allocates fewer vectors than hardware requests. The
software can reuse the same MSI-X address and datain multiple MSI-X dots.

The newer PCI buses, which support MSI/MSI-X, maintain software compatibility with

the legacy line-based interrupts mechanism by emulating legacy interrupts through in-band
mechanisms. These emulated interrupts are treated as legacy interrupts by the host operating
system.

© 2015 Jungo Connectivity Ltd. 67 CONFIDENTIAL

Chapter 9. Advanced Issues

WinDriver supports legacy line-based interrupts, both edge triggered and level sensitive, on all
supported operating systems:. Windows, Windows CE, and Linux. (For Windows CE, see specific
information in Section 9.2.9).

WinDriver also supports PCI MSI/MSI-X interrupts (when supported by the hardware) on Linux
and Windows Vista and higher (earlier versions of Windows do not support MSI/MSI-X), as
detailed in Section 9.2.7.

WinDriver provides asingle set of APIsfor handling both legacy and MSI/MSI-X interrupts, as
described in this manual.

9.2.2. WinDriver Interrupt Handling Sequence

This section describes how to use WinDriver to handle interrupts from a user-mode
application. Since interrupt handling is a performance-critical task, it isvery likely that you
may want to handle the interrupts directly in the kernel. WinDriver's Kernel Plugin [11]
enables you to implement kernel-mode interrupt routines.

To find out how to handle interrupts from the Kernel Plugin, please refer to Section 11.6.5
of the manual.

The interrupt handling sequence using WinDriver is as follows:

1. The user cals one of WinDriver'sinterrupt enable functions— WDC _| nt Enabl e() [B.3.48]
or thelow-level | nt er r upt Enabl e() or WD _I nt Enabl e() functions, described in the
WinDriver PCI Low-Level API Reference — to enable interrupts on the device.

These functions receive an optional array of read/write transfer commands to be executed in
the kernel when an interrupt occurs (see Step 3).

NOTE:

* When using WinDriver to handle level-sensitive interrupts, you must set up transfer
commands for acknowledging the interrupt, as explained in Section 9.2.6.

» Memory allocated for the transfer commands must remain available until the interrupts are
disabled .

When VWDC | nt Enabl e() [B.3.48] or the lower-level | nt er r upt Enabl e() functionis
called, WinDriver spawns athread for handling incoming interrupts.

When using the low-level WD _| nt Enabl e() function you need to spawn the thread
yourself.

WinDriver must be registered with the OS as the driver of the device before enabling
interrupts. For Plug-and-Play hardware (PCI/PCI ExpressyPCMCIA) on Windows
platforms, this association is made by installing an INF file for the device [15.1]. If the
INFfileisnotinstaled, t he i nterrupt enabl e function() will fail witha
WD _NO DEVI CE_OBJECT error [B.9].

2. Theinterrupt thread runs an infinite loop that waits for an interrupt to occur.

© 2015 Jungo Connectivity Ltd. 68 CONFIDENTIAL

Chapter 9. Advanced Issues

3. When an interrupt occurs, WinDriver executes, in the kernel, any transfer commands that
were prepared in advance by the user and passed to WinDriver's interrupt-enable functions
(see Section 9.2.6).

When the control returns to the user mode, the driver's user-mode interrupt handler
routine (as passed to WinDriver when enabling the interrupts with WDC _| nt Enabl e() or
| nt er r upt Enabl e()) iscalled.

4. When the user-mode interrupt handler returns, the wait loop continues.

5. When the user no longer needs to handle interrupts, or before the user-mode
application exits, the relevant WinDriver interrupt disable function should be called
— WDC | nt Di sabl e() [B.3.49] or the low-level | nt er r upt Di sabl e() or
WD | nt Di sabl e() functions, described in the WinDriver PCI Low-L evel API Reference
(depending on the function used to enable the interrupts).

* Thelow-level WD _| nt Wi t () WinDriver function (described in the WinDriver PCI
Low-Level API Reference), which is used by the high-level interrupt enable functions
to wait on interrupts from the device, puts the thread to sleep until an interrupt occurs.
Thereisno CPU consumption while waiting for an interrupt. Once an interrupt
occurs, it isfirst handled by the WinDriver kernel, then WD_| nt Wi t () wakes up the
interrupt handler thread and returns, as explained above.

"
1

» Since your interrupt handler runsin the user mode, you may call any OS API from this
function, including file-handling and GDI functions.

9.2.3. Registering IRQs for Non-Plug-and-Play
Hardware on Windows 7 and Higher

On Windows 7 and higher, you may need to register an interrupt request (IRQ) with WinDriver
before you can assign it to your non-Plug-and-Play device (e.g., your I1SA card).
To register an IRQ with WinDriver on Windows, follow these steps:
1. Open the Device Manager and select View --> Resour ces by type.
2. Select afree IRQ from among those listed in the Interrupt request (IRQ) section.
3. Register the selected IRQ with WinDriver:
a Back up thefilesin the WinDriver\redist directory.

b. Edit windrvr6.inf:

i. Add thefollowing lineinthe[Dri ver I nstal | . NT] section:
LogConfi g=config_irq

© 2015 Jungo Connectivity Ltd. 69 CONFIDENTIAL

Chapter 9. Advanced Issues

ii. Addaconfi g_irq section (where"<IRQ>" signifies your selected IRQ number

—e.g., 10):
[config_ irq]
| RQConf i g=<I RQ®

c. Reinstall WinDriver by running the following from a command-line prompt (where
"<path to windrvr6.inf>" isthe path to your modified WinDriver INF file):
wdreg -inf <path to windrvr6.inf> install

d. Verify that that the IRQ was successfully registered with WinDriver: Open the Device
Manager and locate the WinDriver device. The device properties should have a
Resour ces tab with the registered IRQ.

This procedure registers the IRQ with the virtual WinDriver device. It is recommended that
you rename the windrvr 6 driver module, to avoid possible conflicts with other instances of
WinDriver that may be running on the same machine [15.2].

If you rename your driver, replace references to windrvr 6.inf in the IRQ registration
instructions above with the name of your renamed WinDriver INF file.

9.2.4. Determining the Interrupt Types Supported
by the Hardware

When retrieving resources information for a Plug-and-Play device using

WDC Pci Get Devi cel nf o() [B.3.10] (PCl) or WDC_Pcnti aGet Devi cel nf o() [B.3.11]
(PCMCIA), or the low-level WD_Pci Get Car dI nf o() or WD_Pcnti aGet Car dl nf o()
function (described in the WinDriver PCI Low-L evel APl Reference), the function

returns information regarding the interrupt types supported by the hardware. This

information is returned within the dwQpt i ons field of the returned interrupt resource

(pDevi cel nfo->Card. Itenfi].I.Int.dwOpti ons for the WDC functions

pPci Card->Card. Itenfi].I.Int.dwOptions for thelow-level functions). The
interrupt options bit-mask can contain a combination of any of the following interrupt type flags.

| NTERRUPT _MESSAGE._X: Extended Message-Signaled Interrupts (MSI-X)."
| NTERRUPT _VESSAGE: Message-Signaled Interrupts (MSI).”
| NTERRUPT _LEVEL_SENSI Tl VE: Legacy level-sensitive interrupts.

| NTERRUPT _LATCHED: Legacy edge-triggered interrupts. The value of thisflag is zero and it
is applicable only when no other interrupt flag is set.

The WDC_GET_| NT_OPTI ONS macro returns a WDC device's interrupt options bit-
mask [B.4.9]. Y ou can pass the returned bit-mask to the WDC_| NT_I S_MSI macro to check
whether the bit-mask containsthe MS| or MSI-X flags [B.4.10].

© 2015 Jungo Connectivity Ltd. 70 CONFIDENTIAL

Chapter 9. Advanced Issues

* Thel NTERRUPT_MESSAGE and | NTERRUPT _IVESSACE_ X flags are applicable only
to PCI devices[9.2.7].

« " The Windows APIs do not disti nguish between MSI and MSI-X; therefore, on this OS
the WinDriver functions set the | NTERRUPT_MESSAGE flag for both MSI and MSI-X.

9.2.5. Determining the Interrupt Type Enabled for a
PCI Card

When attempting to enable interrupts for a PCI card on Linux or Windows Vista and higher,
WinDriver first triesto use MSI-X or MSI, if supported by the card. If thisfails, WinDriver
attempts to enable legacy level-sensitive interrupts.

WinDriver's interrupt-enabl e functions return information regarding the interrupt type that

was enabled for the card. Thisinformation is returned within the dwEnabl edl nt Type field

of the WD_| NTERRUPT structure that was passed to the function. When using the high-level
WDC_| nt Enabl e() function, the information is stored within the | nt field of the WDC device
structure referred to by the function's hDev parameter [B.3.48], and can be retrieved using the
WDC GET_ENABLED | NT_TYPE low-level WDC macro [B.4.8].

9.2.6. Setting Up Kernel-Mode Interrupt Transfer
Commands

When handling interrupts you may find the need to perform high-priority tasks at the kernel-
mode level immediately when an interrupt occurs. For example, when handling level-sensitive
interrupts, such as legacy PCI interrupts [9.2.1], the interrupt line must be lowered (i.e., the
interrupt must be acknowledged) in the kernel, otherwise the operating system will repeatedly
call WinDriver's kernel interrupt handler, causing the host platform to hang. Acknowledgment of
the interrupt is hardware-specific and typically involves writing or reading from specific runtime
registers on the device. PCMCIA interrupts al so require hardware-specific kernel-mode interrupt
handling.

WinDriver'sinterrupt enable functions receive an optional pointer to an array of WD TRANSFER
structures [B.5.16], which can be used to set up read/write transfer command from/to memory or
|/O addresses on the device.

The WDC | nt Enabl e() function [B.3.48] accepts this pointer and the number of commandsin
the array as direct parameters (pTr ans Cnrds and dwiNumCrds).

Thelow-level | nt er r upt Enabl e() and WD_| nt Enabl e() functions receive this information
within the Cnd and dwCntds fields of the WD | NTERRUPT structure that is passed to them (see
the WinDriver PCI Low-L evel API Reference).

When you need to execute performance-critical transfers to/from your device upon receiving

an interrupt — e.g., when handling level-sensitive interrupts — you should prepare an array

of WD_TRANSFER structures that contain the required information regarding the read/write
operations to perform in the kernel upon arrival of an interrupt, and pass this array to WinDriver's
interrupt enable functions. As explained in Section 9.2.2, Step 3, WinDriver's kernel-mode

© 2015 Jungo Connectivity Ltd. 71 CONFIDENTIAL

Chapter 9. Advanced Issues

interrupt handler will execute the transfer commands passed to it within the interrupt enable
function for each interrupt that it handles, before returning the control to the user mode. Note:
Memory allocated for the transfer commands must remain available until the interrupts are
disabled .

9.2.6.1. Interrupt Mask Commands

The interrupt transfer commands array that you pass to WinDriver can also contain an interrupt
mask structure, which will be used to verify the source of the interrupt. Thisis done by setting
the transfer structure'scndTr ans field, which defines the type of the transfer command, to
CVD_MASK, and setting the relevant mask in the transfer structure's Dat a field [B.5.16]. Note
that interrupt mask commands must be set directly after aread transfer command in the transfer
commands array.

When WinDriver's kernel interrupt handler encounters a mask interrupt command, it masks the
value that was read from the device in the preceding read transfer command in the array, with the
mask set in the interrupt mask command. If the mask is successful, WinDriver will claim control
of the interrupt, execute the rest of the transfer commands in the array, and invoke your user-
mode interrupt handler routine when the control returns to the user mode. However, if the mask
fails, WinDriver will reject control of the interrupt, the rest of the interrupt transfer commands
will not be executed, and your user-mode interrupt handler routine will not be invoked. (Note:
acceptance and rejection of the interrupt is relevant only when handling legacy interrupts; since
MSI/MSI-X interrupts are not shared, WinDriver will always accept control of such interrupts.)

» To correctly handle shared PCI interrupts, you must always include a mask command
in your interrupt transfer commands array, and set up this mask to check whether the
interrupt handler should claim ownership of the interrupt.

* OnWindows CE, in the case of ashared interrupt, WinDriver'sinterrupt handler
will execute the first mask command that is found in the provided interrupt transfer
commands array, together with the related read command that precedesit (see
information above), before executing any other commands in the array, including
commands that precede the mask command.

Ownership of the interrupt will be determined according to the result of this mask. If

the mask fails, no other transfer commands from the transfer commands array will be
executed — including commands that preceded the mask command in the array. If the
mask succeeds, WinDriver will proceed to perform any commands that precede the first
mask command (and its related read command) in the transfer commands array, and then
any commands that follow the mask command in the array.

» To gain more flexibility and control over the interrupt handling, you can use WinDriver's
Kernel Pluglin feature, which enables you to write your own kernel-mode interrupt
handler routines, as explained in Section 11.6.5 of the manual. Note that Kernel Pluginis
not implemented under Windows CE [11].

© 2015 Jungo Connectivity Ltd. 72 CONFIDENTIAL

Chapter 9. Advanced Issues

9.2.6.2. Sample WinDriver Transfer Commands Code

This section provides sample code for setting up interrupt transfer commands using the
WinDriver Card (WDC) library API [B.2].

The sample code is provided for the following scenario: Assume you have a PCl card that
generates level-sensitive interrupts. When an interrupt occurs you expect the value of your card's
interrupt command-status register (I NTCSR), which is mapped to an I/O port address (pAddr), to
bei nt r Mask.

In order to clear and acknowledge the interrupt you need to write O to the | NTCSR.

The code below demonstrates how to define an array of transfer commands that instructs
WinDriver's kernel-mode interrupt handler to do the following:

1. Read your card's| NTCSR register and save its value.

2. Mask theread | NTCSR value against the given mask (i nt r Mask) to verify the source of the
interrupt.

3. If the mask was successful, write O to the | NTCSR to acknowledge the interrupt.

Note: all commands in the example are performed in modes of DWORD.

Example

WD TRANSFER trans[3]; /* Array of 3 WnDriver transfer comand structures */
BZERQ(tr ans) ;

/* 1st command: Read a DWORD fromthe INTCSR I/ O port */

trans[0] . cndTrans = RP_DWORD;

/* Set address of 10 port to read from */

trans[0].pPort = pAddr; /* Assunme pAddr hol ds the address of the I NTCSR */

/* 2nd command: Mask the interrupt to verify its source */
trans[1] . cnmdTrans = CVD_MASK;
trans[1] . Data. Dmord = intrMask; /* Assune intrMask hol ds your interrupt nask */

/* 3rd conmand: Wite DWORD to the INTCSR I/O port.
This command will only be executed if the value read fromINTCSR in the
1st command matches the interrupt nask set in the 2nd comand. */

trans[2].cnmdTrans = WP_DWORD;

/* Set the address of 1O port to wite to: */

trans[2].pPort = pAddr; /* Assunme pAddr holds the address of |NTCSR */

/* Set the data to wite to the INTCSR IO port: */

trans[2] . Data. Dnord = 0;

After defining the transfer commands, you can proceed to enable the interrupts.

Note that memory allocated for the transfer commands must remain available until the interrupts
are disabled , as explained above.

The following code demonstrates how to use the WDC | nt Enabl e() function to enable the
interrupts using the transfer commands prepared above:

© 2015 Jungo Connectivity Ltd. 73 CONFIDENTIAL

Chapter 9. Advanced Issues

/* Enable the interrupts:
hDev: WDC DEVI CE_HANDLE received froma previous call to WDC Pci Devi ceQpen().
| NTERRUPT_CVD_COPY: Used to save the read data - see WDC_I| nt Enabl e().
i nterrupt_handl er: Your user-node interrupt handl er routi ne.
pData: The data to pass to the interrupt handl er routine. */
WDC | nt Enabl e(hDev, &trans, 3, | NTERRUPT_CMD _COPY, interrupt_handl er,
pData, FALSE);

9.2.7. WinDriver MSI/MSI-X Interrupt Handling

Asindicated in Section 9.2.1, WinDriver supports PCl Message-Signaled Interrupts (MSI) and
Extended Message-Signaled Interrupts (MSI-X) on Linux and Windows Vista and higher (earlier
versions of Windows do not support MSI/MSI-X).

The same APIs are used for handling both legacy and MSI/MSI-X interrupts, including APIs for
retrieving the interrupt types supported by your hardware [9.2.4] and the interrupt type that was
enabled for it [9.2.5].

When enabling interrupts for a PCI device on an OS that supports MSI/MSIx, WinDriver first
triesto enable MSI-X or MSI — if supported by the device — and if thisfails, it attempts to
enable legacy level-sensitive interrupts.

On Windows, enabling MSI or MSIx interrupts requires that arelevant INF file first be
installed for the device, as explained in Section 9.2.7.1.

On Linux, you can specify the types of PCI interrupts that may be enabled for your device,
viathe dwOptions parameter of the WDC _| nt Enabl e() function [B.3.48] or of the low-
level | nt er r upt Enabl e() function (described in the WinDriver PCI Low-L evel

API Reference) — in which case WinDriver will only attempt to enable interrupts of the
specified types (provided they are supported by the device).

WinDriver's kernel-mode interrupt handler sets the interrupt message datain the

dwLast Message field of the WD_| NTERRUPT structure that was passed to the interrupt
enable/wait function. If you pass the same interrupt structure as part of the data to your user-
mode interrupt handler routine, as demonstrated in the sample and generated DriverWizard
interrupt code, you will be able to access this information from your interrupt handler.

When using aKernel Plugln driver [11], the last message data is passed to your kernel-mode
KP_I nt At DpcVSI [B.6.11] handler; on Windows Vista and higher, it is also passed to
KP_I nt At I rql MSI [B.6.10].

Y ou can use the low-level WDC_GET_ENABLED | NT_LAST _MSGmacro to retrieve the last
message datafor a given WDC device [B.4.11].

9.2.7.1. Windows MSI/MSI-X Device INF Files

. Theinformation in this section is relevant only when working on Windows.

© 2015 Jungo Connectivity Ltd. 74 CONFIDENTIAL

Chapter 9. Advanced Issues

To successfully handle PCI interrupts with WinDriver on Windows, you must first install an
INF file that registers your PCI card to work with WinDriver's kernel driver, as explained in
Section 15.1.

To use MSI/MSI-X on Windows, the card's INF file must contain specific[| nstal | . NT. HW
MSI information, as demonstrated below:

[Instal | . NT. HW
AddReg = Install.NT. HW AddReg

[I'nstal | . NT. HW AddReg]

HKR, "lInterrupt Managenent"”, 0x00000010

HKR, "Interrupt Managenent\ MessageSi gnal edl nterrupt Properties”, 0x00000010

HKR, "Interrupt Managenent\ MessageSi ghal edl nterruptProperties", Ml Supported, \
0x10001, 1

Therefore, to use MSI/MSI-X on Windows Vista and higher with WinDriver — provided your
hardware supports MSI/MSI-X — you need to install an appropriate INF file.

When using DriverWizard on Windows Vista and higher to generate an INF file for a PCI device
that supports MSI/MSI-X, the INF generation dialogue allows you to select to generate an INF
file that supports MSI/MSI-X (see Section 4.2, Step 3).

In addition, the WinDriver sample code for the Xilinx Bus Master DMA (BMD) design,
which demonstrates MSI handling, includes a sample MSI INF file for this design —
WinDriver/xilinx/lbomd_design/xilinx_bmd.inf.

If your card's INF file does not include MSI/MSI-X information, as detailed above,
WinDriver will attempt to handle your card's interrupts using the legacy level-sensitive
interrupt handling method, even if your hardware supports MSI/MSI-X.

9.2.8. Sample User-Mode WinDriver Interrupt
Handling Code

The sample code below demonstrates how you can use the WDC library's [B.2] interrupt APIs
(described in Sections B.3.48-B.3.50 of the manual) to implement a simple user-mode interrupt
handler.

For complete interrupt handler source code that uses the WDC interrupt functions, refer, for
example, to the WinDriver pci_diag (WinDriver/samples/pci_diag), pcmcia_diag (WinDriver/
samples/pcmcia_diag), and PLX (WinDriver/plx) samples, and to the generated DriverWizard
PCI/PCMCIA/ISA code. For asample of MSI interrupt handling, using the same APIs, refer to
the Xilinx Bus Master DMA (BMD) design sample (WinDriver/xilinx/bmd_design), or to the
code generated by DriverWizard for PCl hardware that supports MSI/M SI-X on the supported
operating systems (Linux or Windows Vista and higher).

© 2015 Jungo Connectivity Ltd. 75 CONFIDENTIAL

Chapter 9. Advanced Issues

» Thefollowing sample code demonstrates interrupt handling for an edge-triggered 1SA
card. The code does not set up any kernel-mode interrupt transfer commands [9.2.6],
which is acceptable in the case of edge-triggered or MSI/MSI-X interrupts [9.2.1]. Note
that when using WinDriver to handle level-sensitive or PCMCIA interrupts from the user
mode, you must set up transfer commands for acknowledging the interrupt in the kernel,
as explained above and as demonstrated in Section 9.2.6.

* Asmentioned above [9.2.7], WinDriver provides asingle set of APIsfor handling
both legacy and MSI/MSI-X interrupts. Y ou can therefore also use the following code
to handle MSI/MSI-X PCI interrupts (if supported by your hardware), on Linux or
Windows Vista and higher, by simply replacing the use of WDC | saDevi ceQpen() in
the sample with WDC_Pci Devi ceOpen() [B.3.12].

VO D DLLCALLCONV interrupt_handler (PVO D pDat a)

{
PWDC _DEVI CE pDev = (PWDC_DEVI CE) pDat a;
/* 1 nplenment your interrupt handl er routine here */
printf("Got interrupt %\ n", pDev->Int.dwCounter);
}
int main()
{

DWORD dwsSt at us;
WDC_DEVI CE_HANDLE hDev;

WDC_Dr i ver Open(WDC_DRV_OPEN_DEFAULT, NULL);

hDev = WDC | saDevi ceOpen(...);

/* Enable interrupts. This sanple passes the WDC devi ce handl e as the data
for the interrupt handler routine */

dwsSt at us = WDC_I nt Enabl e(hDev, NULL, 0, O,
i nterrupt_handl er, (PVO D)hDev, FALSE);

/* WDC_IntEnable() allocates and initializes the required WD_I NTERRUPT
structure, stores it in the WoC DEVICE structure, then calls
I nterrupt Enabl e(), which calls WD_IntEnabl e() and creates an interrupt
handl er thread. */

i f (WD_STATUS_SUCCESS ! = dwst at us)

{
printf ("Failed enabling interrupt. Error: Ox% - %\n",
dwSt atus, Stat2Str(dwsStatus));
}
el se
{
printf("Press Enter to uninstall interrupt\n");
fgets(line, sizeof(line), stdin);
WDC | nt Di sabl e(hDev) ;
/* WDC_IntDisable() calls InterruptDi sable();
InterruptDisable() calls WD_IntDisable(). */
}

© 2015 Jungo Connectivity Ltd. 76 CONFIDENTIAL

Chapter 9. Advanced Issues

WDC | saDevi ceC ose(hDev) ;

WDC Driverd ose();

9.2.9. Interrupts on Windows CE

Windows CE uses alogical interrupt scheme rather than the physical interrupt number. It
maintains an internal kernel table that maps the physical IRQ number to the logical IRQ number.
Device drivers are expected to use the logical interrupt number when requesting interrupts from
Windows CE. In this context, there are three approaches to interrupt mapping:

1. Use Windows CE Plug-and-Play for Interrupt Mapping (PCI busdriver)
Thisis the recommended approach to interrupt mapping on Windows CE. Register the device
with the PCI bus driver. Following this method will cause the PCI bus driver to perform the
IRQ mapping and direct WinDriver to use it.

For an example how to register your device with the PCI bus driver, refer to Section 5.3.

2. Usethe Platform Interrupt Mapping (on x86 or ARM)
In most of the x86 or MIPS platforms, all physical interrupts, except for afew reserved
interrupts, are statically mapped using this simple mapping:
| ogical interrupt = SYSINTR _FI RMMRE + physical interrupt

When the deviceis not registered with Windows CE Plug-and-Play, WinDriver will follow
this mapping.

3. Specify the Mapped Interrupt Value

This option can only be performed by the Platform Builder.

"
1

Provide the device's mapped logical interrupt value. If unavailable, statically map the
physical IRQ to alogical interrupt. Then call WD_Car dRegi st er () with the logical
interrupt and with the | NTERRUPT _CE | NT_| Dflag set. The static interrupt map isin the
file CFWPC.C (located inthe % _TARGETPLATROOT%\KERNEL\HAL directory).

Y ou will then need to rebuild the Windows CE image (NK .BIN) and download the new
executable onto your target platform.

Static mapping is helpful also in the case of using reserved interrupt mapping. Suppose your
platform static mapping is:

* IRQO: Timer Interrupt
* |RQ2: Cascade interrupt for the second PIC

* |RQ6: Thefloppy controller

© 2015 Jungo Connectivity Ltd. 7 CONFIDENTIAL

Chapter 9. Advanced Issues

* IRQ7: LPT1 (because the PPSH does not use interrupts)
* IRQ9
* IRQ13: The numeric coprocessor

An attempt to initialize and use any of these interrupts will fail. However, you may

want to use one or more of these interrupts on occasion, such as when you do not

want to use the PPSH, but you want to reclaim the parallel port for some other

purpose. To solve this problem, simply modify the file CFWPC.C (located in the

% _ TARGETPLATROOT%\KERNEL\HAL directory) to include code, as shown below,
that sets up avalue for interrupt 7 in the interrupt mapping table:

SETUP_I NTERRUPT_MAP(SYSI NTR_FI RMAARE+7, 7) ;

Suppose you have a PCI card which was assigned 1RQ9. Since Windows CE does not map
thisinterrupt by default, you will not be able to receive interrupts from this card. In this case,
you will need to insert asimilar entry for IRQO:

SETUP_I NTERRUPT_MAP(SYSI NTR_FI RMAARE+9, 9) ;

9.2.9.1. Improving Interrupt Latency on Windows CE

Y ou can reduce the interrupt latency on Windows CE for PCI devices by making slight changesin
the registry and in your code:

1. When developing your driver on Windows CE platforms, you must first register your device
to work with WinDriver, as explained in Section 5.3.
Changethe last value in the registry from
"Wl nt Enh" =dwor d: O
to
"Wl nt Enh" =dwor d: 1

If you exclude thisline, or leave the value 0O, the interrupt latency will not be reduced.

2. Add WD_CE_ENHANCED_INTR to your Preprocessor Definitions of your project
and recompile your entire project. When using Microsoft eMbedded Visual C++, the
Preprocessor Definitions are found under Project Settings.

3. When using the low-level WD_xxx API (described in the WinDriver PCI Low-Level API
Reference), call WD _I nt er r upt DoneCe() immediately after calling WD_| nt Enabl e().

When using WinDriver's WDC APIs[B.2] to handle the interrupts, or when
enabling interrupts using the lower-level | nt er r upt Enabl e() function
(described in the WinDriver PCI Low-L evel APl Reference), you do not
need to call WD _I nt er r upt DoneCe(), since WDC _| nt Enabl e() [B.3.48] /
I nt er rupt Enabl e() automatically call WD_I nt er r upt DoneCe().

© 2015 Jungo Connectivity Ltd. 78 CONFIDENTIAL

Chapter 9. Advanced Issues

WD | nt er r upt DoneCe() receives two parameters.

voi d WD_I nt errupt DoneCe(HANDLE hWD, WD_| NTERRUPT pint);

* hWD: Handle to WinDriver's kernel-mode driver as received from WD_Open() (see
description of WD_Open() inthe WinDriver PCI Low-Level APl Reference)

* pl nt: Pointer to aWD_| NTERRUPT structure returned from VWD _I nt Enabl e()

9.3. Byte Ordering

9.3.1. Introduction to Endianness

There are two main architectures for handling memory storage. They are called Big Endian and
Little Endian and refer to the order in which the bytes are stored in memory.

» Big endian means that the most significant byte of any multi-byte data field is stored at the
lowest memory address.
This means a Hex word like 0x1234 is stored in memory as (0x12 0x34). The big end, or upper
end, is stored first. The sameistrue for afour-byte value; for example, 0x12345678 would be
stored as (0x12 0x34 0x56 0x78).

* Little endian means that the least significant byte of any multi-byte datafield is stored at the
lowest memory address.
This means a Hex word like 0x1234 is stored in memory as (0x34 0x12). Thelittle end, or
lower end, is stored first. The same istrue for afour-byte value; for example, 0x12345678
would be stored as (0x78 0x56 0x34 0x12).

All processors are designated as either big endian or little endian. Intel's x86 processors and their
clones arelittle endian. Sun's SPARC, Motorola's 68K, and the PowerPC families are all big
endian.

An endianness difference can cause problems if acomputer unknowingly triesto read binary data
written in the opposite format from a shared memory location or file.

The terms big endian and little endian are derived from the Lilliputians of Gulliver's Travels
(Jonathan Swift 1726), whose major political issue was which end of the soft-boiled egg should
be opened, the little or the big end.

9.3.2. WinDriver Byte Ordering Macros

The PCI busis designated as little endian, complying with x86 architecture. In order to prevent
problems resulting from byte ordering incompatibility between the PCI bus and the PowerPC
architecture, WinDriver includes macro definitions that convert data between little and big endian.

© 2015 Jungo Connectivity Ltd. 79 CONFIDENTIAL

Chapter 9. Advanced Issues

When developing drivers using WinDriver, these macro definitions enable cross platform
portability. Using these macro definitions is safe even for drivers that are going to be deployed on
x86 architecture.

The following sections describe the macros and when to use them.

9.3.3. Macros for PCI Target Access

WinDriver's macros for PCI target access are used for converting endianness while reading/
writing from/to PCI cards using memory mapped ranges of PCI devices.

. These macro definitions apply to the Linux PowerPC architecture.

» dtoh16 — Macro definition for converting a WORD (device to host)

» dtoh32 — Macro definition for converting a DWORD (device to host)
» dtoh64 — Macro definition for converting a QWORD (device to host)
Use these macros in the following situations:

1. To prepare data to be written to the device, in cases of direct write accessto the card using a
memory mapped range.

For example:

DWORD data = VALUE;
*mapped_address = dtoh32(data);

2. To process data that has been read from the device, in cases of direct read access from the
card using a memory mapped range.

For example:
WORD data = dt oh16(*napped_address);

WinDriver's APIs— WDC_Read/ Wi t eXXX() [B.3.21-B.3.26],

WDC_Mul ti Transf er () [B.3.27], and the lower level WD_Tr ansf er () and

WD _Mul ti Tr ansf er () functions (seethe WinDriver PCI Low-L evel APl Reference)
already perform the required byte ordering translations, therefore when using these APIs
to read/write memory addresses you do not need to use the dt oh16/ 32/ 64() macros to
convert the data (nor is thisrequired for 1/0O addresses).

© 2015 Jungo Connectivity Ltd. 80 CONFIDENTIAL

Chapter 9. Advanced Issues

9.3.4. Macros for PCIl Master Access

WinDriver's macros for PCI master access are used for converting endianness of datain host
memory that is accessed by the PCI master device, i.e., in cases of access that isinitiated by the
device rather than the host.

. These macro definitions apply to the Linux PowerPC architecture.

* htod16 — Macro definition for converting aWORD (host to device)
* htod32 — Macro definition for converting a DWORD (host to device)
* htod64 — Macro definition for converting a QWORD (host to device)

Use these macros to prepare data on the host memory to be a read/written by the card. An
example of such acase isachain of descriptors for scatter/gather DMA.

The following example is an extract from the PLX_DMAGCpen() function in WinDriver's PLX
library (see WinDriver/plx/lib/plx_lib.c):
/* Setting chain of DVA pages in the nmenory */

for (dwPageNunber = 0, u32MenoryCopied = 0;
dwPageNunber < pPLXDme- >pDma- >dwPages;

dwPageNunber ++)
{
pLi st [dwPageNunber] . u32PADR =
ht 0d32((Ul NT32) pPLXDma- >pDma- >Page[dwPageNunber] . pPhysi cal Addr) ;
pLi st [dwPageNunber] . u32LADR =
ht od32((u32Local Addr + (fAutoinc ? u32MenoryCopied : 0)));
pLi st [dwPageNunber] . u32SI Z =
ht 0d32((Ul NT32) pPLXDma- >pDna- >Page[dwPageNunber] . dwByt es) ;
pLi st [dwPageNunber] . u32DPR =
ht od32((u32Start Of Chain + sizeof (DVA LI ST) * (dwPageNunber + 1))
| BITO | (flsRead ? BIT3 : 0));
u32Menor yCopi ed += pPLXDma- >pDna- >Page[dwPageNumnber] . dwByt es;
}

pLi st [dwPageNunmber - 1].u32DPR | = htod32(BIT1); /* Mark end of chain */

© 2015 Jungo Connectivity Ltd. 81 CONFIDENTIAL

Chapter 10
Improving Performance

10.1. Overview

Once your user-mode driver has been written and debugged, you might find that certain modules
in your code do not operate fast enough (for example: an interrupt handler or accessing I/O-
mapped regions). If thisis the case, try to improve performance in one of the following ways:

* Improve the performance of your user-mode driver [10.2].

» Create aKernel Plugin driver [11] and move the performance-critical portions of your code to
the Kernel Plugin.

Kernel Pluglin is not implemented under Windows CE. In this operating system there
IS no separation between kernel mode and user mode, therefore top performance can be
achieved without using the Kernel Plugin. To improve the interrupt handling rate on
Windows CE, follow the instructions in Section 9.2.9.1 of the manual.

Use the following checklist to determine how to best improve the performance of your driver.

© 2015 Jungo Connectivity Ltd. 82 CONFIDENTIAL

Chapter 10. Improving Performance

10.1.1. Performance Improvement Checklist

The following checklist will help you determine how to improve the performance of your driver:

Problem

Solution

ISA Card — accessing an 1/O-mapped range
on the card

When transferring alarge amount of data,

use block (string) transfers and/or group
several datatransfer function callsinto asingle
multi-transfer function call, as explained in
Section 10.2.2 below.

If this does not solve the problem, handle the
1/O at kernel mode by writing aKernel Plugin
driver, as explained in Chapters 11 and 12 of
the manual.

PCI Card — accessing an |/O-mapped range
on the card

Avoid using I/0 ranges in your hardware
design. Use Memory mapped ranges instead as
they are accessed significantly faster.

Accessing a memory-mapped range on the
card

Try to access memory directly instead of using
function calls, as explained in Section 10.2.1
below.

When transferring large amounts of data,
consider also the solution to problem #1
above.

If the problem persists, then thereisa
hardware design problem. Y ou will not be able
to increase performance by using any software
design method, writing a Kernel Pluglin, or
even by writing afull kernel driver.

Interrupt latency — missing interrupts,
receiving interruptstoo late

Handle the interrupts in the kernel mode by
writing aKernel Plugln driver, asexplained in
Chapters 11 and 12.

PCI target access vs. master access

PCI target accessis usualy slower than PCI
master access (bus-master DMA). For large
data transfers, bus-master DMA accessis
preferable. Section 9.1 of the manual explains
how to use WinDriver to implement bus-
master DMA.

© 2015 Jungo Connectivity Ltd.

83 CONFIDENTIAL

Chapter 10. Improving Performance

10.2. Improving the Performance of a
User-Mode Driver

Asagenera rule, transfers to memory-mapped regions are faster than transfers to I/O-mapped
regions, because WinDriver enables you to access memory-mapped regions directly from the user
mode, without the need for afunction call, as explained in Section 10.2.1.

In addition, the WinDriver APIs enable you to improve the performance of your 1/0 and memory
data transfers by using block (string) transfers and by grouping severa datatransfersinto asingle
function call, as explained in Section 10.2.2.

10.2.1. Using Direct Access to Memory-Mapped
Regions

When registering a PCI/PCMCIA/ISA card, using WDC_xxxDevi ceQpen() (PCI [B.3.12] /
PCMCIA [B.3.13] / ISA [B.3.14]) or the low-level WD_Car dRegi st er () function (see the
WinDriver PCI Low-Level API Reference), WinDriver returns both user-mode and kernel-
mode mappings of the card's physical memory regions. These addresses can then be used to
access the memory regions on the card directly, either from the user mode or from the kernel
mode (respectively), thus eliminating the context switches between the user and kernel modes and
the function calls overhead for accessing the memory.

The WDC_MEM DI RECT_ADDR macro [B.4.5] provides the relevant direct memory access
base address — user-mode mapping when called from the user-mode / kernel-mode mapping
when called from aKernel Plugin driver [11] — for a given memory address region on the card.
Y ou can then pass the mapped base address to the WDC_ReadMen8/ 16/ 32/ 64 [B.3.21]

and WDC Wit eMenB/ 16/ 32/ 64 [B.3.22] macros, along with the desired offset within the
selected memory region, to directly access a specific memory address on the card, either from the
user mode or in the kernel.

In addition, all the WDC_ReadAddr XXX() [B.3.23] and WDC_W i t eAddr XXX() [B.3.24]
functions — with the exception of WDC_ReadAddr Bl ock() [B.3.25] and

WDC Wi t eAddr Bl ock() [B.3.26] — access memory addresses directly, using the correct
mapping, based on the calling context (user mode/kernel mode).

When using the low-level WD_xxx () APIs, described in the WinDriver PCI Low-Level API
Refer ence, the user-mode and kernel-mode mappings of the card's physical memory regions are
returned by WD_Car dRegi st er () withinthe pTr ansAddr and pUser Di r ect Addr fields
of thepCar dReg- >Car d. | t enf i] card resourceitem structures. The pTr ansAddr result
should be used as abase addressin callsto WD_Tr ansf er (Jor WD_Mul ti Tr ansf er () or
when accessing memory directly from a Kernel Plugin driver [11]. To access the memory directly
from your user-mode process, use pUser Di r ect Addr asaregular pointer.

Whatever the method you select to access the memory on your card, it isimportant to align
the base address according to the size of the data type, especially when issuing string transfer
commands. Otherwise, the transfers are split into smaller portions.

The easiest way to align datais to use basic types when defining a buffer, i.e.:

© 2015 Jungo Connectivity Ltd. 84 CONFIDENTIAL

Chapter 10. Improving Performance

BYTE buf[len]; /* for BYTE transfers - not aligned */

WORD buf[l en]; /* for WORD transfers - aligned on a 2-byte boundary */
U NT32 buf[len]; /* for DAORD transfers - aligned on a 4-byte boundary */
U NT64 buf[len]; /* for QAMORD transfers - aligned on a 8-byte boundary */

10.2.2. Block Transfers and Grouping Multiple
Transfers

To transfer large amounts of data to/from memory addresses or 1/0 addresses (which by definition
cannot be accessed directly, as opposed to memory addresses — see Section 10.2.1), use the
following methods to improve performance by reducing the function calls overhead and context
switches between the user and kernel modes:

» Perform block (string) transfers using WDC_ReadAddr Bl ock() [B.3.25] /
WDC_W i t eAddr Bl ock() [B.3.26], or the low-level WD_Tr ansf er () function (see
WinDriver PCI Low-Level API Reference).

» Group severd transfersinto asingle function call, using WDC_Mul ti Tr ansf er () [B.3.27]

or the low-level WD_Mul t i Tr ansf er () function (seethe WinDriver PCI Low-Level API
Reference).

10.2.3. Performing 64-Bit Data Transfers

The ability to perform actual 64-bit transfersis dependent on the existence of support for
such transfers by the hardware, CPU, bridge, etc., and can be affected by any of these
factors or their specific combination.

WinDriver supports 64-bit PCI data transfers on the supported Windows and Linux 64-bit
platforms (see Appendix A for afull list), aswell as on Windows and Linux 32-bit x86 platforms.

If your PCI hardware (card and bus) is 64-bit, the ability to perform 64-bit data transfers on
32-bit platforms will enable you to utilize your hardware's broader bandwidth, even if your host
operating system is only 32-bit.

This innovative technology makes possible data transfer rates previously unattainable on 32-bit
platforms. Drivers developed using WinDriver will attain significantly better performance
results than drivers written with the WDK or other driver development tools. To date, such tools
do not enable 64-bit data transfer on x86 platforms running 32-bit operating systems. Jungo's
benchmark performance testing results for 64-bit data transfer indicate a significant improvement
of datatransfer rates compared to 32-bit data transfer, guaranteeing that drivers devel oped with
WinDriver will achieve far better performance than 32-bit data transfer normally allows.

© 2015 Jungo Connectivity Ltd. 85 CONFIDENTIAL

Chapter 10. Improving Performance

Y ou can perform 64-bit data transfers using any of the following methods:
» Cadl WDC_ReadAddr 64() [B.3.23] or WOC_W i t eAddr 64() [B.3.24].

e Cal WOC_ReadAddr Bl ock() [B.3.25] or WDC W i t eAddr Bl ock() [B.3.26] with an
access mode of WOC_SI ZE_ 64 [B.3.1.4].

o CadlWDC Ml ti Transf er () [B.3.27] or thelow-level WD_Tr ansf er () or
WD _Mul ti Tr ansf er () functions (see WinDriver PCI Low-Level APl Reference) with
QWORD read/write transfer commands (see the documentation of these functions for details).

Y ou can a'so perform 64-bit transfers to/from the PCI configuration space using
WDC Pci ReadCf g64() [B.3.35] / WDC _Pci Wit eCf g64() [B.3.36] and
WDC Pci ReadCf gBy Sl ot 64() [B.3.33] / WDC _Pci Wit eCf gBySI ot 64() [B.3.34].

© 2015 Jungo Connectivity Ltd. 86 CONFIDENTIAL

Chapter 11
Understanding the Kernel Plugin

This chapter provides a description of WinDriver's Kernel Plugln feature.

Kernel Pluglin is not implemented under Windows CE. In this operating system there is no
separation between kernel mode and user mode, therefore top performance can be achieved
without using the Kernel Plugin. To improve the interrupt handling rate on Windows CE,
follow the instructions in Section 9.2.9.1 of the manual.

11.1. Background

The creation of driversin user mode imposes a fair amount of function call overhead from the
kernel to user mode, which may cause performance to drop to an unacceptable level. In such
cases, the Kernel Plugln feature allows critical sections of the driver code to be moved to the
kernel while keeping most of the code intact. Using WinDriver's Kernel Plugin feature, your
driver will operate without any degradation in performance.

The advantages of writing a Kernel Plugln driver over a standard OS kernel-mode driver are:
 All the driver code is written and debugged in user mode.

* The code segments that are moved to kernel mode remain essentially the same and therefore
typically no kernel debugging is needed.

» The parts of the code that will run in the kernel through the Kernel Plugin are platform
independent and therefore will run on every platform supported by WinDriver and the Kernel
Plugin. A standard kernel-mode driver will run only on the platform it was written for.

Using WinDriver's Kernel Plugln feature, your driver will operate without any performance
degradation.

11.2. Do | Need to Write a Kernel Plugln
Driver?

Not every performance problem requires you to write a Kernel Plugin driver. Some performance
problems can be solved in the user-mode driver by better utilization of the features that
WinDriver provides. For further information, please refer to Chapter 10.

© 2015 Jungo Connectivity Ltd. 87 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.3. What Kind of Performance Can |
Expect?

Since you can write your own interrupt handler in the kernel with the WinDriver Kernel Plugin,
you can expect to handle about 100,000 interrupts per second without missing any one of them.

11.4. Overview of the Development Process

Using the WinDriver Kernel Plugln, you normally first develop and debugs the driver in the user
mode, using with the standard WinDriver tools. After identifying the performance-critical parts of
the code (such as the interrupt handling or access to 1/O-mapped memory ranges), you can create
aKernel Plugin driver, which runsin kernel mode, and drop the performance-critical portions

of your code into the Kernel Plugln driver, thus eliminating the calling overhead and context
switches that occur when implementing the same tasks in the user mode.

This unique architecture allows the developer to start with quick and easy development in the user
mode, and progress to performance-oriented code only where needed, thus saving development
time and providing for virtually zero performance degradation.

11.5. The Kernel Plugin Architecture

11.5.1. Architecture Overview

A driver written in user mode uses WinDriver's APl (WDC _xxx and/or WD_xxXx [B.2]) to
access devices. If a certain function that was implemented in the user mode requires kernel
performance (the interrupt handler, for example), that function is moved to the WinDriver Kernel
Plugln. Generally it should be possible to move code that usesWDC _xxx / WD _xxx function
calls from the user mode to the kernel without modification, since the same WinDriver APl is
supported both in the user mode and in the Kernel Plugin.

© 2015 Jungo Connectivity Ltd. 88 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Figure 11.1. Kernel Plugln Architecture

Your application
Your Dinver code
I I I
WinDnver Used\ o de
Library
(Windorh)
Uzer Mode
S —— - | Kermel MMode
Fermel Plugln Y v ¥ ¥
! ! Interrupt !
Youhndions | 3inD gver H;mg],fg nte gt
S Kemel | | WinDriver [* ¥l Your
nit :
KB open) Phugln L . Eemel . . Handvrare
{ |KP_IntatIrql) Message —
i |¥E_Inthtlipci(] P&sing I/
i KFP_Calli)
KP Clasel]

11.5.2. WinDriver's Kernel and Kernel Plugin
Interaction

There are two types of interaction between the WinDriver kernel and the WinDriver Kernel
Plugin:

 Interrupt handling: When WinDriver receives an interrupt, by default it will activate the
caller's user-mode interrupt handler. However, if the interrupt was set to be handled by a Kernel
Plugln driver, then once WinDriver receives the interrupt, it activates the Kernel Plugln driver's
kernel-mode interrupt handler. Y our Kernel Plugln interrupt handler could essentially consist
of the same code that you wrote and debugged in the user-mode interrupt handler, before
moving to the Kernel Plugln, although some of the user-mode code should be modified. We
recommend that you rewrite the interrupt acknowledgment and handling code in the Kernel
Pluglin to utilize the flexibility offered by the Kernel Plugin (see Section 11.6.5).

» Message passing: To execute functions in kernel mode (such as I/O processing functions), the
user-mode driver simply passes a message to the WinDriver Kernel Plugin. The message is
mapped to a specific function, which is then executed in the kernel. This function can typically
contain the same code as it did when it was written and debugged in user mode.

Y ou can aso use messages to pass data from the user-mode application to the Kernel Plugin
driver.

© 2015 Jungo Connectivity Ltd. 89 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.5.3. Kernel Plugin Components

At the end of your Kernel Plugln development cycle, your driver will have the following
components:

» User-mode driver application (<application name>/.exe), written with the WDC_xxx /
WD xxx API.

* The WinDriver kernel module — windrvr 6.sys.0/.ko, depending on the operating system.

» Kernel Plugin driver (<Kernel Plugin driver name>/.sys.o/ .ko/.kext), which was a so written
withthe WDC_xxx / WD_xxx API, and contains the driver functionality that you have
selected to bring down to the kernel level.

11.5.4. Kernel Plugin Event Sequence

Thefollowing isatypical event sequence that covers all the functions that you can implement in
your Kernel Plugin:

11.5.4.1. Opening a Handle from the User Mode to a Kernel
Plugin Driver

Event/Callback Notes

Event: Windows loads your Kernel Plugin Thistakes place at boot time, by dynamic
driver. loading, or asinstructed by the registry.
Callback: Your KP_I ni t Kernel Plugin KP_I ni t informs WinDriver of the name(s)
routine [B.6.1] iscaled of your KP_Open routing(s) [B.6.2].

WinDriver calls the relevant open routine
when there is a user-mode request to open a
handle to your Kernel Pluglin driver.

Event: Your user-mode driver application
requests a handle to your Kernel Pluglin driver,
by calling one of the following functions:

* WDC_Ker nel Pl ugl nOpen() [B.3.19]

* WDC xxxDevi ceOpen() (PCI [B.3.12] /
PCMCIA [B.3.13] / ISA [B.3.14]) with the
name of the Kernel Plugin driver

* WD _Ker nel Pl ugl nQpen() — when
using the low-level WinDriver APl (seethe
WinDriver PCI Low-Level API Reference)

Callback: Therelevant KP_Open Kernel The KP_Open [B.6.2] callback is used to
Plugln callback routine [B.6.2] is called. inform WinDriver of the names of al the
callback functions that you have implemented
inyour Kernel Plugln driver, and to initiate the
Kernel Plugin driver, if needed.

© 2015 Jungo Connectivity Ltd. 90 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.5.4.2. Handling User-Mode Requests from the
Kernel Plugin

Event/Callback Notes

Event: Your application calls Y our application calls

WDC _Cal | Ker Pl ug() [B.3.20], or the WDC _Cal | Ker Pl ug() /

low-level WD_Ker nel Pl ugl nCal | () WD _Ker nel Pl ugl nCal | () to execute
function (seethe WinDriver PCI Low-Level | codein the kernel mode (in the Kernel Plugin
API Reference). driver). The application passes a message to

the Kernel Plugln driver. The Kernel Plugin
driver will select the code to execute according

to the message sent.
Callback: Your KP_Cal | Kernel Plugin KP_Cal | [B.6.4] executes code according to
routine [B.6.4] iscalled. the message passed to it from the user mode.

© 2015 Jungo Connectivity Ltd. 91 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.5.4.3. Interrupt Handling — Enable/Disable and

High Interrupt Request Level

Event/Callback

Processing

Notes

Event: Your application calls

WDC | nt Enabl e() [B.3.48] with the

f UseKP parameter set to TRUE (after having
opened a handle to the Kernel Plugin), or
callsthe low-level | nt er r upt Enabl e()
or WD _| nt Enabl e() functions (see the
WinDriver PCI Low-Level API Reference)
with ahandleto aKernel Plugin driver
(setinthe hKer nel Pl ugl n field of the
WD | NTERRUPT structure passed to the
function).

Callback: Your KP_I nt Enabl e Kernel
Plugin routine [B.6.6] is called.

This function should contain any initialization
required for your Kernel Plugln interrupt
handling.

Event: Your hardware creates an interrupt.

Callback: Your high-IRQL Kernel

Plugln interrupt handler routine —

KP_I nt Atlrqgl [B.6.8] (legacy interrupts)
or KP_I nt At I rql MSI [B.6.10] (MSI/
MSI-X) —iscalled.

KP_IntAtlrgl [B.6.8] and

KP_I nt Atlrqgl MSI [B.6.10] runat ahigh
priority, and therefore should perform only
the basic interrupt handling, such aslowering
the HW interrupt signal of level-sensitive
interrupts to acknowledge the interrupt.

If more interrupt processing is required,

KP_I nt Atlrqgl (legacy interrupts) or
KP_I nt At I rqgl MslI (MSI/MSI-X) can
return TRUE in order to defer additional
processing to the relevant deferred processing
interrupt handler — KP_I nt At Dpc [B.6.9]
or KP_I nt At DpcMSI [B.6.11].

Event: Your application calls

WDC | nt Di sabl e() [B.3.49], or the
low-level | nt er rupt Di sabl e() or

WD | nt Di sabl e() functions (see the
WinDriver PCI Low-Level API Reference),
when the interrupts were previously enabled

in the Kernel Plugin (see the description of the
interrupt enable event above).

Callback: Your KP_I nt Di sabl e
Kernel Plugin routine [B.6.7] iscalled.

This function should free any memory that
was allocated by the KP_I nt Enabl e
callback [B.6.6].

© 2015 Jungo Connectivity Ltd.

92 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.5.4.4. Interrupt Handling — Deferred Procedure Calls

Event/Callback

Notes

Event: The Kernel Plugin high-IRQL
interrupt handler — KP_I nt At I r ql [B.6.8]
orKP_IntAtlrql MslI [B.6.10] — returns
TRUE.

Thisinforms WinDriver that additional
interrupt processing is required as a Deferred
Procedure Call (DPC) in the kernel.

Callback: Your Kernel Plugln DPC interrupt
handler — KP_I nt At Dpc [B.6.9] (legacy
interrupts) or KP_I nt At DpcVSI [B.6.11]
(MSI/MSI-X) — iscalled.

Processes the rest of the interrupt code, but at
alower priority than the high-IRQL interrupt
handler.

Event: The DPC interrupt handler

— KP_I nt At Dpc [B.6.9] or

KP_I nt At DpcMSI [B.6.11] — returnsa
value greater than 0.

Thisinforms WinDriver that additional user-
mode interrupt processing is required.

Callback: VWD | nt Wi t () (seethe
WinDriver PCI Low-Level API Reference)
returns.

Y our user-mode interrupt handler routineis
executed.

© 2015 Jungo Connectivity Ltd.

93 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.5.4.5. Plug-and-Play and Power Management Events

Event/Callback Notes

Event: Your application registers to receive
Plug-and-Play and power management
notifications using a Kernel Pluglin driver, by
calling WDC_Event Regi st er () [B.3.51]
with the with the f Us eKP parameter

set to TRUE (after having opened the

device with aKernel Plugin), or callsthe
low-level Event Regi st er () (seethe
WinDriver PCI Low-Level API Reference)
or WD_Event Regi st er () functions with
ahandle to aKernel Plugln driver (set in the
hKer nel Pl ugl n field of the WD _EVENT
structure that is passed to the function).

Event: A Plug-and-Play or power
management event (to which the application
registered to listen) occurs.

Callback: Your KP_Event Kerne Plugin KP_Event receivesinformation about the

routine [B.6.5] iscalled. event that occurred and can proceed to handle
it as needed.

Event: KP_Event [B.6.5] returns TRUE. Thisinforms WinDriver that the event also
requires user-mode handling.

Callback: VWD I nt Wi t () (seethe Y our user-mode event handler routineis

WinDriver PCI Low-Level API Reference) | executed.

returns.

11.6. How Does Kernel Plugin Work?

The following sections take you through the development cycle of a Kernel Plugin driver.
It is recommended that you first write and debug your entire driver code in the user mode. Then,

if you encounter performance problems or require greater flexibility, port portions of your code to
aKernel Plugin driver.

11.6.1. Minimal Requirements for Creating a
Kernel Plugin Driver

To build aKernel Plugin driver you need the following tools:

* On Windows: The Windows Driver Kit (WDK), including its C build tools.

© 2015 Jungo Connectivity Ltd. 94 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

The WDK is available as part of a Microsoft Devel opment Network
(MSDN) subscription, or from Microsoft Connect. For more

information, refer to Microsoft's Windows Driver Kit (WDK) page —
http://msdn.microsoft.com/en-ug/library/windows/hardware/gg487428.aspx.

* OnLinux;

« GCC, gmake or make

While thisis not aminimal requirement, when developing a Kernel Plugin driver it is
highly recommended that you use two computers. set up one computer as your host
platform and the other as your target platform. The host computer is the computer on which
you develop your driver and the target computer is the computer on which you run and test
the driver you develop.

11.6.2. Kernel Plugln Implementation

11.6.2.1. Before You Begin

The functions described in this section are callback functions, implemented in the Kernel Plugin
driver, which are called when their calling event occurs — see Section 11.5.4 for details. For
example, KP_I ni t [B.6.1] isthe callback function that is called when the driver isloaded.

The name of your driverisgivenin KP_I ni t . The Kernel Plugin driver'simplementation

of this callback must be named KP_I ni t . The names of the other Kernel Plugin callback
functions (which are passed to KP_I ni t) are left to the discretion of the driver developer.

It isthe convention of this reference guide to refer to these callbacks using the format
KP_<Functi onal i t y>— for example, KP_Open.

When generating Kernel Plugln code with the DriverWizard, the names of the callback functions
(apart from KP_I ni t) conform to the following format: KP_<Driver Name>_<Functionality>.
For example, if you named your project MyDevice, the name of your Kernel Plugin KP_Cal |
callback will be KP_MyDevi ce_Cal I .

11.6.2.2. Write Your KP_Init Function

Your KP_I ni t function [B.6.1] should be of the following prototype:
BOOL _ cdecl KP_Init (KP_INT *kplnit);

Thisfunction is called once, when the driver isloaded. The function should fill the received

KP_I NI T structure [B.7.4] with the name of the Kernel Plugln driver, the name of the WinDriver
Kernel Plugin driver library, and the driver's KP_Open callback(s) [B.6.2] (see examplein
WinDriver/samples/pci_diag/kp_pci/kp_pci.c).

© 2015 Jungo Connectivity Ltd. 95 CONFIDENTIAL

http://msdn.microsoft.com/en-us/library/windows/hardware/gg487428.aspx

Chapter 11. Understanding the Kernel Plugin

» The name that you select for your Kernel Plugin driver — by setting it in
thecDr i ver Nane field of the KP_I NI T structure [B.7.4] that is passed to
KP_I ni t [B.6.1] — should be the name of the driver that you wish to create; i.e.,
if you are creating adriver called XX X.sys, you should set the name "XXX" in the
cDri ver Name field of the KP_I NI T structure.

 You should verify that the driver name that is used when opening a handle to the
Kernel Plugln driver in the user mode [12.4] — in the pKPOpenDat a parameter of the
WDC_Ker nel Pl ugl nOpen() [B.3.19] or WDC_xxxDevi ceOpen() (PCI [B.3.12]
/ PCMCIA [B.3.13] / ISA [B.3.14]) functions, or inthe pcDr i ver Nane field of the
pKer nel Pl ugl n parameter passed to the low-level WD_Ker nel Pl ugl nOpen()
function — isidentical to the driver name that was set inthecDr i ver Nane field of the
KP_I NI T structure [B.7.4] that is passed to KP_I ni t [B.6.1].
The best way to implement thisis to define the driver name in a header file that is shared
by the user-mode application and the Kernel Plugln driver and use the defined valuein
all relevant locations.

From the KP_PCI sample (WinDriver/samples/pci_diag/kp_pci/kp_pci.c):

/* KP_Init is called when the Kernel Plugln driver is |oaded.
This function sets the nane of the Kernel Plugln driver and the driver's
open cal |l back function(s). */

BOOL _ cdecl KP_Init(KP_INIT *kplnit)

{
/* Verify that the version of the WnDriver Kernel Plugln library
is identical to that of the windrvr.h and wd_kp.h files */
if (WD_VER != kplnit->dwer WD)
{

/* Rebuild your Kernel Plugln driver project with the conpatible
version of the WnDriver Kernel Plugln library (kp_nt<version>.lib)
and wi ndrvr.h and wd_kp.h files */

return FALSE;

}
kpl ni t->funcQpen = KP_PCl _Open;
kpl nit->funcOpen_32_64 = KP_PCl VI RT_Open_32_64;
strcpy (kplnit->cDriverName, KP_PCl_DRlI VER NAME) ;
return TRUE;

}

Note that the driver name in the sample is set using a preprocessor definition. This definition is
found in the WinDriver/samples/pci_diag/pci_lib.h header file, which is shared by the pci_diag
user-mode application and the KP_PCI Kernel Plugln driver:

/* Kernel Plugln driver name (should be no nbre than 8 characters) */
#define KP_PCl DRI VER NAMVE "KP_PCl "

© 2015 Jungo Connectivity Ltd. 96 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.6.2.3. Write Your KP_Open Function(s)

Y ou can implement either one or two KP_Open functions, depending on your target
configuration [B.6.2]. The KP_Open function(s) should be of the following prototype:

BOOL _ cdecl KP_Open (
KP_OPEN _CALL *kpOpencCal I,
HANDLE hWD,

PVO D pOpenDat a,
PVA D *ppDrvCont ext);

This callback is called when opening a handle to the Kernel Plugin driver from the
user mode — i.e.,, when WD_Ker nel Pl ugl nOQpen() iscalled, either directly or via
WDC_Ker nel Pl ugl nOpen() [B.3.19] or WDC _xxxDevi ceOpen() (PCI [B.3.12] /
PCMCIA [B.3.13] / ISA [B.3.14]), asexplained in Section 12.4.

In the KP_Qpen function, define the callbacks that you wish to implement in the Kernel Plugin.

Thefollowing isalist of the callbacks that can be implemented:

Callback

Functionality

KP_Cl ose [B.6.3]

Called when the

WD _Ker nel Pl ugl nCl ose() function
(seethe WinDriver PCI Low-Level

API Reference) iscalled from the user

mode — either directly, or via one of the
high-level WDC_xxxDevi ceCl ose()
functions (PCI [B.3.15] / PCMCIA [B.3.16]
/1SA [B.3.17]) when called for a device that
contains an open Kernel Plugin handle [12.4].

KP_Cal | [B.6.4]

Called when the user-mode application calls
the WDC_Cal | Ker Pl ug() function [B.3.20]
or the low-level WD_Ker nel Pl ugl nCal | ()
function (see the WinDriver PCI Low-L evel
API Reference), which is called by the
wrapper WOC_Cal | Ker Pl ug() function.
This function implements a Kernel Plugin
message handler.

© 2015 Jungo Connectivity Ltd.

97

CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Callback Functionality

KP_I nt Enabl e [B.6.6] Called when the user-mode application
enables Kernel Pluglin interrupts, by calling
WDC | nt Enabl e() with thef UseKP
parameter set to TRUE (after having opened
aKernel Plugin handle), or by calling

the low-level | nt er r upt Enabl e() or
WD | nt Enabl e() functions (see the
WinDriver PCI Low-Level APl Reference)
with ahandleto aKernel Plugin driver
(setinthe hKer nel Pl ugl n field of the
WD _| NTERRUPT structure that is passed to
the function).

This function should contain any initialization
required for your Kernel Plugln interrupt
handling.

KP_I nt D sabl e [B.6.7] Called when the user-mode application
calls\WDC | nt Di sabl e() [B.3.49], or

the low-level | nt er r upt Di sabl e() or
WD | nt Di sabl e() functions (see the
WinDriver PCI Low-Level API Reference),
if the interrupts were previously enabled with
aKernel Plugln driver (see the description of
KP_I nt Enabl e above).

This function should free any memory that
was allocated by the KP_I nt Enabl e
callback [B.6.6].

KP_IntAtlrgl [B.6.8] Called when WinDriver receives a legacy
interrupt, provided the received interrupt was
enabled with a handle to the Kernel Plugin.
Thisisthe function that will handle your
legacy interrupt in the kernel mode. The
function runs at high interrupt request level.
Additional deferred processing of the interrupt
can be performed in KP_I nt At Dpc and also
in the user mode (see below).

© 2015 Jungo Connectivity Ltd. 98 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Callback Functionality

KP_I nt At Dpc [B.6.9] Cdledif theKP_I nt At I rql

callback [B.6.8] has requested deferred
handling of alegacy interrupt by returning
TRUE.

This function should include lower-priority
kernel-mode interrupt handler code.

The return value of this function determines
the amount of times that the application's user-
mode interrupt handler routine will be invoked
(if at al).

KP_IntAtlrgl Ml [B.6.10] Called when WinDriver receives an MSI or
MSI-X, provided MSI/MSI-X was enabled

for the received interrupt with a handle

to the Kernel Plugin. Thisisthe function

that will handle your MSI/MSI-X in the

kernel mode. The function runs at high
interrupt request level. Additional deferred
processing of the interrupt can be performed in
KP_I nt At DpcMSI and also in the user mode
(see below).

Note: MSI/MSI-X is supported on Linux and
Windows Vista and higher.

KP_I nt At DpcMSI [B.6.11] Calledif theKP_I nt At | r gl MBI

callback [B.6.10] has requested deferred
handling of an MSI/MSI-X interrupt by
returning TRUE.

This function should include lower-priority
kernel-mode MSI/MSI-X handler code.

The return value of this function determines
the amount of times that the application’s user-
mode interrupt handler routine will be invoked
(if at al).

Note: MSI/MSI-X is supported on Linux and
Windows Vista and higher.

© 2015 Jungo Connectivity Ltd. 99 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Callback Functionality

KP_Event [B.6.5] Called when a Plug-and-Play or power
management event occurs, provided

the user-mode application previously
registered to receive notifications for this
event in the Kernel Plugin by calling

WDC Event Regi st er () [B.3.51] with the
f UseKP parameter set to TRUE (after having
opened aKernel Plugin handle), or by calling
the low-level Event Regi st er () (seethe
WinDriver PCI Low-Level APl Reference)
or WD_Event Regi st er () functions with
ahandle to aKernel Plugln driver (set in the
hKer nel Pl ugl n field of the WD _EVENT
structure that is passed to the function).

As indicated above, these handlers will be called (respectively) when the user-mode program
opens/closes a handle to Kernel Plugin driver [12.4], sends a message to the Kernel Plugin

driver (by calling WDC_Cal | Ker Pl ug() / WD_Ker nel Pl ugl nCal | ()), enables interrupts
with aKernel Plugln driver (by calling WDC _| nt Enabl e() with the f UseKP parameter set to
TRUE, after having opened a handle to the Kernel Plugin/ calling | nt er r upt Enabl e() or
WD | nt er r upt Enabl e() with ahandleto the Kernel Plugin set inthe hKer nel Pl ugl n
field of the WD _| NTERRUPT structure that is passed to function), or disables interrupts

(WDC_I nt Di sabl e()/ I nterrupt Di sabl e()/WD_I nt Di sabl e()) that have been enabled
using aKernel Plugin driver;

The Kernel Plugin interrupt handlers will be called when an interrupt occurs, if the interrupts
were enabled using a Kernel Plugin driver (see above).

The Kernel Plugin event handler will be called when a Plug-and-Play or power management
event occurs, if the application registered to receive notifications for the event that occurred using
aKernel Plugin driver (by calling WOC_Event Regi st er () with the f UseKP parameter set to
TRUE, after having opened the device with aKernel Plugin/ calling Event Regi st er () (see
the WinDriver PCI Low-Level API Reference) or WD_Event Regi st er () withahandleto a
Kernel Plugin driver set in the hKer nel Pl ugl n field of the WD_EVENT structure that is passed
to the function).

In addition to defining the Kernel Plugln callback functions, you can implement code to perform
any required initialization for the Kernel Plugin in your KP_QOpen callback(s) [B.6.2]. In the
sample KP_PCI driver and in the generated DriverWizard Kernel Plugin driver, for example,
the Kernel Plugln open callbacks also call the shared library's initialization function and allocate
memory for the Kernel Plugln driver context, which is then used to store the device information
that was passed to the function from the user mode.

From the KP_PCI sample (WinDriver/samples/pci_diag/kp_pci/kp_pci.c):

© 2015 Jungo Connectivity Ltd. 100 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

/* KP_PCI _Qpen is called when WD _Kernel Pl ugl nOpen() is called fromthe
user node.
pDrvContext will be passed to the rest of the Kernel Plugln callback
functions. */
BOOL _ cdecl KP_PCI_Open(KP_OPEN CALL *kpQpenCall, HANDLE hWD, PVO D pOpenDat a,
PVO D *ppDr vCont ext)

{
PCl _DEV_ADDR DESC *pDevAddr Desc;
WDC_ADDR_DESC * pAddr Desc;
DWORD dwsSi ze;
DWORD dwst at us;
/[* Initialize the PCl library */
dwsStatus = PCl _Liblnit();
i f (WD_STATUS_SUCCESS ! = dwst at us)
{
KP_PCl _Err("KP_PCl _Open: Failed to initialize the PCl library: %",
PCl _GetLastErr());
return FALSE;
}
KP_PCl _Trace("KP_PCI _Open entered. PCl library initialized.\n");
kpOpenCal | - >funcCl ose = KP_PCl _C ose;
kpOpenCal | ->funcCall = KP_PCl _Cal | ;
kpOpenCal | - >f uncl nt Enabl e = KP_PCl _I nt Enabl e;
kpOpenCal | - >f uncl nt Di sabl e = KP_PCl _I nt Di sabl e;
kpOpenCal | ->funclntAtlrgl = KP_PCl _IntAtlrqgl;
kpOpenCal | - >f uncl nt At Dpc = KP_PCl _I nt At Dpc;
kpOpenCal | ->funcintAtlrqgl M5l = KP_PCl _IntAtlrql Vsl;
kpOpenCal | - >f uncl nt At DpcMsl = KP_PCl _I nt At DpcMSI ;
kpOpenCal | - >funcEvent = KP_PCl _Event;
/* Create a copy of device information in the driver context */
dwSi ze = si zeof (PCl _DEV_ADDR _DESC) ;
pDevAddr Desc = nal | oc(dwSi ze) ;
i f (!pDevAddrDesc)
goto mall oc_error;
COPY_FROM USER(pDevAddr Desc, pOpenData, dwSize);
dwSi ze = si zeof (WDC_ADDR DESC) * pDevAddr Desc- >dwNumAddr Spaces;
pAddr Desc = mal | oc(dwSi ze) ;
i f (!pAddrDesc)
goto malloc_error;
COPY_FROM USER(pAddr Desc, pDevAddr Desc- >pAddr Desc, dwSi ze);
pDevAddr Desc- >pAddr Desc = pAddr Desc;
*ppDr vCont ext = pDevAddr Desc;
KP_PCl _Trace("KP_PCl _Open: Kernel Plugln driver opened successfully\n");
return TRUE;
mal | oc_error:
KP_PCl _Err("KP_PCl _Open: Failed allocating %d bytes\n", dwSi ze);
i f (pDevAddr Desc)
free(pDevAddr Desc) ;
PCl _LibUninit();
return FALSE;
}

© 2015 Jungo Connectivity Ltd. 101 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

The KP_PCI sample adso definesasimilar KP_PClI _Open_32_64 calback, for use when
opening a handle to a 64-bit Kernel Plugin from a 32-bit application.

11.6.2.4. Write the Remaining Plugin Callbacks

Implement the remaining Kernel Plugln routines that you wish to use (such asthe KP_I nt xxx
functions — for handling interrupts, or KP_Event — for handling Plug-and-Play and power
management events).

11.6.3. Sample/Generated Kernel Plugin Driver
Code Overview

Y ou can use DriverWizard to generate a skeletal Kernel Plugin driver for your device, and use
the generated code as the basis for your Kernel Plugln driver development (recommended);
aternatively, you can use one of the Kernel Plugin WinDriver samples as the basis for your
Kernel Plugln development.

The Kernel Plugln documentation in this manual focuses on the generated DriverWizard
code, and the generic PCI Kernel Plugin sample— KP_PCI, located in the
WinDriver/samples/pci_diag/kp_pci directory.

If you are using the a PCl Express card with the Xilinx Bus Master DMA (BMD) design,
you can also use the KP_BMD Kernel Plugln sample as the basis for your development; the
WinDriver/xilinx/bmd_design directory contains al the relevant sample files — see the
Xilinx BMD Kernel Plugln directory structure note at the end of Section 11.6.4.1.

The Kernel Plugin driver is not a standalone module. It requires a user-mode application that
initiates the communication with the driver. A relevant application will be generated for your
driver when using DriverWizard to generate Kernel Plugln code. The pci_diag application (found
under the WinDriver/samples/pci_diag directory) communicates with the sample KP_PCI
driver.

Both the KP_PCI sample and the wizard-generated code demonstrate communication
between a user-mode application (pci_diag / xxx_diag — where xxx is the name you sel ected
for your generated driver project) and a Kernel Plugin driver (kp_pci.sys.ol.kol kext /
kp_xxx.sys/.o/.kol.kext — depending on the OS).

The sample/generated code demonstrates how to pass data to the Kernel Plugin's KP_QOpen
function, and how to use this function to allocate and store a global Kernel Plugin driver context
that can be used by other functionsin the Kernel Plugin.

The sample/generated Kernel Plugln code implements a message for getting the driver's version
number, in order to demonstrate how to initiate specific functionality in the Kernel Plugin from
the user mode and how to pass data between the Kernel Plugin driver and a user-mode WinDriver
application via messages.

© 2015 Jungo Connectivity Ltd. 102 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

The sample/generated code also demonstrates how to handle interrupts in the Kernel Plugin.
The Kernel Plugin implements an interrupt counter and interrupt handlers, including deferred
processing interrupt handling, which is used to notify the user-mode application of the arrival of
every fifth incoming interrupt.

The KP_PCI samplesKP_I nt At I r gl [B.6.8] and KP_I nt At Dpc [B.6.9] functions
demonstrate legacy level-sensitive PCI interrupt handling. Asindicated in the comments

of thesample KP_I nt At I r gl function, you will need to modify this function in order to
implement the correct code for acknowledging the interrupt on your specific device, since
interrupt acknowledgment is hardware-specific. The sample KP_I nt At | r gl MSI [B.6.10]
and KP_I nt At DpcVSI [B.6.11] functions demonstrate handling of Message-Signaled
Interrupts (MSI) and Extended Message-Signaled Interrupts (M SI-X) (see detailed information in
Section 9.2).

The generated Driver Wizard code will include sample interrupt handler code for the selected
device (PCI/PCMCIA/ISA). The generated KP_I nt At | r gl function will include code to
implement any interrupt transfer commands defined in the wizard (by assigning registers read/
write commands to the card's interrupt in the I nterrupt tab). For legacy PCl and PCMCIA
interrupts, which need to be acknowledged in the kernel when the interrupt is received

(see Section 9.2), it is recommended that you use the wizard to define the commands for
acknowledging (clearing) the interrupt, before generating the Kernel Plugln code, so that the
generated code will already include the required code for executing the commands you defined.
It is also recommended that you prepare such transfer commands when handling interrupts

for hardware that supports MSI/MSI-X, in case enabling of MSI/MSI-X fails and the interrupt
handling defaults to using level-sensitive interrupts (if supported by the hardware).

Note: Memory allocated for the transfer commands must remain available until the interrupts are
disabled .

In addition, the sample/generated code demonstrates how to receive notifications of
Plug-and-Play and power management events in the Kernel Plugin.

. Werecommend that you build and run the sample/generated Kernel Plugln project (and
L 1 . . e e . L
- corresponding user-mode application) "as-is" before modifying the code or writing your
own Kernel Plugln driver. Note, however, that you will need to modify or remove the
hardware-specific transfer commandsin the sasmplesKP_I nt At | r gl function, as
explained above.

11.6.4. Kernel Plugin Sample/Generated Code
Directory Structure

11.6.4.1. pci_diag and kp_pci Sample Directories

The KP_PCI Kernel Plugin sample code isimplemented in the kp_pci.c file. This sample driver
is part of the WinDriver PCI diagnostics sample — pci_diag — which contains, in addition to
the KP_PCI driver, a user-mode application that communicates with the driver (pci_diag) and a
shared library that includes APIsthat can be utilized by both the user-mode application and the
Kernel Plugin driver. The source files for this sample are implemented in C.

Following is an outline of the files found in the WinDriver/samples/pci_diag directory:

© 2015 Jungo Connectivity Ltd. 103 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

* kp_pci — Containsthe KP_PCI Kernel Plugin driver files:
= kp_pci.c: The source code of the KP_PCI driver.

« Project and/or make files and related files for building the Kernel Plugin driver.
The Windows project/make files are located in subdirectories for the target development
environment (msdev_<version>/win_gcc) under x86 (32-bit) and amd64 (64-bit)
directories.
The Linux makefileis generated using a configur e script, located directly under the kp_pci
directory.

« A pre-compiled version of the KP_PCI Kernel Plugin driver for the target OS:

* Windows x86 32-bit: WINNT.i386\kp_pci.sys — a 32-bit version of the driver, built for
Windows XP and higher.

= Windows x64: WINNT .x86_64\kp_pci.sys— a 64-bit version of the driver, built for
Windows Server 2003 and higher.

» Linux: Thereis no pre-compiled version of the driver for Linux, since Linux kernel
modules must be compiled with the header files from the kernel version installed on the
target — see Section 14.4.

 pci_lib.c: Implementation of alibrary for accessing PCI devices using WinDriver's WDC
API [B.2]. Thelibrary's API is used both by the user-mode application (pci_diag.c) and by the
Kernel Plugin driver (kp_pci.c).

* pci_lib.h: Header file, which provides the interface for the pci_lib library.

* pci_diag.c: Implementation of a sample diagnostics user-mode console (CUI) application,
which demonstrates communication with a PCI device using the pci_lib and WDC libraries.
The sample also demonstrates how to communicate with a Kernel Plugin driver from a user-
mode WinDriver application. By default, the sample attempts to open the selected PCI device
with ahandle to the KP_PCI Kernel Plugln driver. If successful, the sample demonstrates how
to interact with aKernel Plugin driver, asdetailed in Section 11.6.3. If the application fails
to open a handle to the Kernel Plugin driver, all communication with the device is performed
from the user mode.

 pci.inf (Windows): A sample WinDriver PCI INF file for Windows. NOTE: To use thisfile,
change the vendor and device IDs in the file to comply with those of your specific device.

To use Message-Signaled Interrupts (MSI) or Extended Message-Signaled I nterrupts
(MSI-X) on Windows Vista and higher (for PCI cards that support MSI/MSI-X) you will
need to modify or replace the sample INF file so that your INF file includes specific MS|
information; otherwise WinDriver will attempt to use legacy level-sensitive interrupt
handling for your card, as explained in Section 9.2.7.1 of the manual.

© 2015 Jungo Connectivity Ltd. 104 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

» Project and/or make files for building the pci_diag user-mode application.
The Windows project/make files are located in subdirectories for the target development
environment (msdev_<version>/win_gcc) under x86 (32-bit) and amd64 (64-bit) directories.
The msdev_<version> MS Visua Studio directories also include solution files for building
both the Kernel Plugin driver and user-mode application projects.
The Linux makefileislocated under a LI NUX subdirectory.

» A pre-compiled version of the user-mode application (pci_diag) for your target operating
System:

« Windows: WIN32\pci_diag.exe
« Linux: LINUX/pci_diag
* filesitxt: A list of the sample pci_diag files.

» readme.txt: An overview of the sample Kernel Plugln driver and user-mode application and
instructions for building and testing the code.

Xilinx BMD Kernel Plugln Directory Structure

The structure of the sample directory for PCl Express cards with the Xilinx Bus Master
DMA (BMD) design — WinDriver/xilinx/bmd_design — is similar to that of the generic
PCl sample's pci_diag directory, except for the following issues: the bmd_diag user-mode
application files are located under a diag subdirectory, and the kp subdirectory, which
contains the Kernel Plugin driver's (KP_BM D) sourcefiles, currently has make files only
for Windows.

11.6.4.2. The Generated DriverWizard Kernel Plugin
Directory

The generated DriverWizard Kernel Plugln code for your device will include a kernel-mode
Kernel Plugln project and a user-mode application that communicates with it. As opposed to
the generic KP_PCI and pci_diag sample, the wizard-generated code will utilize the resources
information detected and/or defined for your specific device, aswell as any device-specific
information that you define in the wizard before generating the code.

Asindicated in Section 11.6.3, when using the driver to handle legacy PCI or PCMCIA interrupts,
it is highly recommended that you define the registers that need to be read/written in order to
acknowledge the interrupt, and set up the relevant read/write commands from/to these registers

in DriverWizard, before generating the code, thus enabling the generated interrupt handler code
to utilize the hardware-specific information that you defined. It is also recommended that you
prepare such transfer commands when handling interrupts for hardware that supports MSI/MSI-X,
in case enabling of MSI/MSI-X fails and the interrupt handling defaults to using level-sensitive
interrupts (if supported by the hardware).

Note: Memory allocated for the transfer commands must remain available until the interrupts are
disabled .

© 2015 Jungo Connectivity Ltd. 105 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Following is an outline of the generated DriverWizard files when selecting to generate Kernel
Plugln code (where xxx signifies the name that you selected for the driver when generating
the code). NOTE: The outline below relates to the generated C code, but on Windows you can
also generate similar C# code, which includes a C Kernel Plugln driver (since kernel-mode
drivers cannot be implemented in C#), a.NET C# library, and a C# user-mode application that
communicates with the Kernel Plugin driver.

» kermode — Containsthe KP_XXX Kernel Plugin driver files:
« kp_xxx.c: The source code of the KP_XXX driver.

« Project and/or make files and related files for building the Kernel Plugin driver.
The Windows project/make files are located in subdirectories for the target development
environment (msdev_<version>/win_gcc) under x86 (32-bit) and amd64 (64-bit)
directories.
The Linux makefileis generated using a configur e script, located in alinux subdirectory.

o xxx_lib.c: Implementation of alibrary for accessing your device using WinDriver's WDC
API [B.2]. Thelibrary's API is used both by the user-mode application (xxx_diag) and by the
Kernel Plugln driver (KP_XXX).

o xxx_lib.h: Header file, which provides the interface for the xxx_lib library.

» xxx_diag.c: Implementation of a sample diagnostics user-mode console (CUI) application,
which demonstrates communication your device using the xxx_lib and WDC libraries.
The application also demonstrates how to communicate with a Kernel Plugin driver from a
user-mode WinDriver application. By default, the application attempts to open your device
with ahandle to the KP_XXX Kernel Plugln driver. If successful, the application demonstrates
how to interact with a Kernel Plugin driver, as detailed in Section 11.6.3. If the application fails
to open a handle to the Kernel Plugin driver, all communication with the device is performed
from the user mode.

» Project and/or make files for building the xxx_diag user-mode application.
The Windows project/make files are located in subdirectories for the target development
environment (msdev_<ver sion>/win_gcc) under x86 (32-bit) and amd64 (64-bit) directories.
The msdev_<version> MS Visua Studio directories also include solution files for building
both the Kernel Plugin driver and user-mode application projects.
The Linux makefileislocated in alinux subdirectory.

o xxx_files.txt: A list of the generated files and instructions for building the code.

o xxx.inf (Windows): A WinDriver INF file for your device. Thisfileisrequired only when
creating a Windows driver for a Plug-and-Play device, such as PCI and PCMCIA.

© 2015 Jungo Connectivity Ltd. 106 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

11.6.5. Handling Interrupts in the Kernel Plugin

Interrupts will be handled in the Kernel Plugin driver, if enabled, using aKernel Plugln driver, as
explained below [11.6.5.2].

If Kernel Plugln interrupts were enabled, when WinDriver receives a hardware interrupt, it calls
the Kernel Plugln driver's high-IRQL handler — KP_I nt At | r gl [B.6.8] (legacy interrupts)
orKP_Int Atlrql Msl [B.6.10] (MSI/MSI-X). If the high-IRQL handler returns TRUE, the
relevant deferred Kernel Plugln interrupt handler — KP_I nt At Dpc [B.6.9] (legacy interrupts)
or KP_I nt At DpcMsI [B.6.11] (MSI/MSI-X) — will be called after the high-IRQL handler
completes its processing and returns. The return value of the DPC function determines how many
times (if at al) the user-mode interrupt handler routine will be executed. In the KP_PCI sample,
for example, the Kernel Plugln interrupt handler code counts five interrupts, and notifies the

user mode on every fifth interrupt; thusVWWD_| nt Wi t () (seethe WinDriver PCI Low-L evel
API Reference) will return on only one out of every five incoming interrupts in the user

mode. The high-IRQL handler — KP_I nt At 1 rqgl [B.6.8] or KP_I nt At I rql VSI [B.6.10]
— returns TRUE every five interrupts to activate the DPC handler — KP_I nt At Dpc or

KP_I nt At DpcMSI — and the DPC function returns the number of accumulated DPC calls from
the high-IRQL handler. As aresult, the user-mode interrupt handler will be executed once for
every 5 interrupts.

11.6.5.1. Interrupt Handling in the User Mode (Without the
Kernel Pluglin)

If the Kernel Plugln interrupt handle is not enabled, then each incoming interrupt will cause
VD _| nt Wai t () to return, and your user-mode interrupt handler routine will be invoked

once WinDriver completes the kernel processing of the interrupts (mainly executing the
interrupt transfer commands passed in the call to WDC _| nt Enabl e() [B.3.48] or the low-level
| nt er r upt Enabl e() or WD_I nt Enabl e() functions — see the WinDriver PCI Low-L evel
API Reference) — see Figure 11.2.

© 2015 Jungo Connectivity Ltd. 107 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Figure 11.2. Interrupt Handling Without Kernel Plugin

Kernel Mode

Your Driver Code

WD_IntWait()

WD_IntWait()

WinDriver Kernel

Interrupt Signal

il
.

Your
Hardware

11.6.5.2. Interrupt Handling in the Kernel (Using the

Kernel Pluglin)

To have the interrupts handled by the Kernel Pluglin, the user-mode application should

open a handle to aKernel Plugln driver (as explained in Section 12.4), and then call

WDC | nt Enabl e() [B.3.48] with the f UseKP parameter set to TRUE.

If your are not using the WDC _xxx API [B.2], your application should pass a handle to the
Kernel Plugin driver to the WD _| nt Enabl e() function or the wrapper | nt er r upt Enabl e()
function (which callsWD _| nt Enabl e() and WD _I nt Wi t ()). This enables the Kernel Plugin
interrupt handler. (The Kernel Plugin handle is passed within the hKer nel Pl ugl n field of the
WD | NTERRUPT structure that is passed to the functions.) For details regarding the low-level
WD _xxx() API, refer to the WinDriver PCI Low-Level API Reference.

© 2015 Jungo Connectivity Ltd.

108

CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Figure 11.3. Interrupt Handling With the Kernel Plugin

Your Driver Code

WD_IntEnable()

User Mode
___________________________ '_______________
Kernel Mode |
[s =====1 |
| i |
! WinDriver Kernel Plugin : #
1 I
I
i KP_IntAtirql() / KP_IntAtDpc() / | Intt_arrupt
I | KP_IntAtirqIMSI() KP_IntAtDpcMSI() | | WinDriver Kernel |« Signal Your
P { . Hardware
! High Priority Low Priority :
! Code Code |
P} } i
I
! :

When calling WDC _I nt Enabl e() /I nt er r upt Enabl e() / WD_I nt Enabl e() to enable
interruptsin the Kernel Plugin, your Kernel Plugin's KP_I nt Enabl e callback function [B.6.6]
isactivated. In this function you can set the interrupt context that will be passed to the Kernel
Plugln interrupt handlers, as well as write to the device to actually enable the interrupts in the
hardware and implement any other code required in order to correctly enable your device's
interrupts.

If the Kernel Plugln interrupt handler is enabled, then the relevant high-IRQL handler, based
on the type of interrupt that was enabled — KP_I nt At | r gl [B.6.8] (legacy interrupts) or
KP_I nt Atlrqgl Vsl [B.6.10] (MSI/MSI-X) — will be called for each incoming interrupt.
The code in the high-IRQL handler is executed at high interrupt request level. While this code
isrunning, the systemis halted, i.e., there will be no context switches and no lower-priority
interrupts will be handled.

© 2015 Jungo Connectivity Ltd. 109 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

Code running at high IRQL islimited in the following ways:

* It may only access non-pageable memory.

* It may only call the following functions (or wrapper functions that call these functions):
* WDC_xxx() read/write address or configuration space functions.

« WOC Mul ti Transf er () [B.3.27], or the low-level WD_Tr ansf er (),
WD_Mul ti Transf er (), or WO_DebugAdd() functions (see the WinDriver PCI
Low-Level API Reference).

» Specific kernel OS functions (such as WDK functions) that can be called from high interrupt
request level. Note that the use of such functions may break the code's portability to other
operating systems.

« It may not call mal | oc(), f r ee(), or any WDC_xxx or WD_xxx API other than those listed
above.

Because of the aforementioned limitations, the code in the high-IRQL handler

(KP_IntAtlrql [B.6.8] or KP_I nt Atlrqgl MSI [B.6.10]) should be kept to a minimum, such
as acknowledgment (clearing) of level-sensitive interrupts. Other code that you want to runin

the interrupt handler should be implemented in the DPC function (KP_I nt At Dpc [B.6.9] or
KP_I nt At DpcMSI [B.6.11]), which runs at a deferred interrupt level and does not face the same
[imitations as the high-IRQL handlers. The DPC function is called after its matching high-IRQL
function returns, provided the high-IRQL handler returns TRUE.

Y ou can also leave some additional interrupt handling to the user mode. The return value of your
DPC function — KP_I nt At Dpc [B.6.9] or KP_I nt At DpcVSI [B.6.11] — determines the
amount of times (if any) that your user-mode interrupt handler routine will be called after the
kernel-mode interrupt processing is completed.

11.6.6. Message Passing

The WinDriver architecture enables a kernel-mode function to be activated from the

user mode by passing a message from the user mode to the Kernel Plugln driver using

WDC_Cal | Ker Pl ug() [B.3.20] or the low-level WD_Ker nel Pl ugl nCal | () function (see the
WinDriver PCI Low-Level API Reference).

The messages are defined by the developer in a header file that is common to both the user-mode
and kernel-mode plugin parts of the driver. In the pci_diag KP_PCI sample and the generated
DriverWizard code, the messages are defined in the shared library header file— pci_lib.h in the
sample or xxx_lib.h in the generated code.

Upon receiving the message from the user mode, WinDriver will executethe KP_Cal | [B.6.4]
Kernel Plugln callback function, which identifies the message that has been received and executes
the relevant code for this message (as implemented in the Kernel Plugin).

© 2015 Jungo Connectivity Ltd. 110 CONFIDENTIAL

Chapter 11. Understanding the Kernel Plugin

The sample/generated Kernel Pluglin code implement a message for getting the driver's version

in order to demonstrate Kernel Plugin data passing. The code that sets the version number in
KP_Cal | isexecuted inthe Kernel Plugin whenever the Kernel Plugln receives arelevant
message from the user-mode application. Y ou can see the definition of the message in the shared
pci_lib.h / xxx_lib.h shared header file. The user-mode application (pci_diag.exe / xxx_diag.exe)
sends the message to the Kernel Plugin driver viathe WDC _Cal | Ker Pl ug() function [B.3.20].

© 2015 Jungo Connectivity Ltd. 111 CONFIDENTIAL

Chapter 12
Creating a Kernel Plugln Driver

The easiest way to write aKernel Plugin driver isto use Driver Wizard to generate the Kernel
Plugln code for your hardware (see Sections 11.6.3 and 11.6.4.2). Alternatively, you can use one
of the WinDriver Kernel Plugln samples as the basis for your Kernel Plugln development. You
can also develop your code "from scratch”, if you wish.

Asindicated in Section 11.6.3, the Kernel Plugln documentation in this manual focuses on
the generated DriverWizard code, and the generic PCI Kernel Plugin sample— KP_PCI,
located in the WinDriver/samples/pci_diag/kp_pci directory.

If you are using the a PCI Express card with the Xilinx Bus Master DMA (BMD) design,
you can also use the KP_BMD Kernel Plugln sample as the basis for your development; the
WinDriver/xilinx/bmd_design directory contains al the relevant sample files— see the
Xilinx BMD Kernel Plugln directory structure note at the end of Section 11.6.4.1.

The following is a step-by-step guide to creating your Kernel Pluglin driver.

12.1. Determine Whether a Kernel Plugln is
Needed

The Kernel Plugin should be used only after your driver code has been written and debugged in
the user mode. Thisway, al of the logical problems of creating a device driver are solved in the
user mode, where devel opment and debugging are much easier.

Determine whether a Kernel Plugln should be written by consulting Chapter 10, which explains
how to improve the performance of your driver. In addition, the Kernel Plugln affords greater
flexibility, which is not always available when writing the driver in the user mode (specifically
with regard to the interrupt handling).

12.2. Prepare the User-Mode Source Code

1. Isolate the functions you need to move into the Kernel Plugin.

2. Remove any platform-specific code from the functions. Use only functions that can also be
used from the kernel.

3. Recompile your driver in the user mode.

4. Debug your driver in user mode again to see that your code still works after changes have
been made.

© 2015 Jungo Connectivity Ltd. 112 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

» Keepinmind that the kernel stack isrelatively limited in size. Therefore, code that will
be moved into the Kernel Plugin should not contain static memory allocations. Use the
mal | oc() function to allocate memory dynamically instead. Thisis especially important
for large data structures.

* If the user-mode code that you are porting to the kernel accesses memory addresses
directly using the user-mode mapping of the physical address returned from the low-level
WD_Car dRegi st er () function — note that in the kernel you will need to use the
kernel mapping of the physical address instead (the kernel mapping is aso returned by
WD_Car dRegi st er (). For details, refer to the description of WD_Car dRegi st er ()
inthe WinDriver PCI Low-Level APl Reference.

When using the API of the WDC library [B.2] to access memory, you do not need to
worry about this, since this API ensures that the correct mapping of the memory is used
depending on whether the relevant APIs are used from the user mode or from the kernel
mode.

12.3. Create a New Kernel Plugin Project

Asindicated above [12], you can use Driver Wizard to generate a new Kernel Pluglin project (and
a corresponding user-mode project) for your device (recommended), or use one of the WinDriver
Kernel Plugln samples as the basis for your development.

To successfully build aKernel Plugin project using MS Visua Studio, the path to the
project directory must not contain any spaces.

If you select to start your development with the KP_PCI sample, follow these steps:

1. Make acopy of the WinDriver/samples/pci_diag/kp_pci directory. For example, to create a
new Kernel Plugin project called KP_MyDrv, copy WinDriver/samples/pci_diag/kp_pci to
WinDriver/samples/mydrv.

2. Change all instances of "KP_PCI" and "kp_pci", in all the Kernel Plugin filesin your new
directory, to "KP_MyDrv" and "kp_mydrv" (respectively).
The names of the KP_PCl _xxx() functionsin the kp_pci.c files do not have to be changed,
but the code will be clearer if you use your selected driver name in the function names.

3. Change all occurrences of "KP_PCI" in file namesto "kp_mydrv".

4. To usethe shared pci_lib library API from your Kernel Plugln driver and user-mode
application, copy the pci_lib.h and pci_lib.c files from the WinDriver/samples/pci_diag
directory to your new mydrv directory. Y ou can change the names of the library functionsto
use your driver's name (MyDrv) instead of "PCI", but note that in this case you will also need
to modify the namesin al callsto these functions from your Kernel Plugln project and user-
mode application. If you do not copy the shared library to your new project, you will need
to modify the sample Kernel Plugln code and replace al referencesto the PCl _xxx library
APIswith aternative code.

© 2015 Jungo Connectivity Ltd. 113 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

5. Modify the files and directory pathsin the project and make files, and the #include pathsin
the source files, as needed (depending on the location in which you selected to save your new
project directory).

6. To usethe pci_diag user-mode application, copy WinDriver/samples/pci_diag/pci_diag.c
and the relevant pci_diag project, solution, or make filesto your mydrv directory, rename the
files (if you wish), and replace al "pci_diag" references in the files with your preferred user-
mode application name. To use the solution files, also replace the referencesto "KP_PCI" in
the files with your new Kernel Plugin driver, e.g., "KP_MyDrv". Then modify the sample
code to implement your desired driver functionality.

For a general description of the sample and generated Kernel Plugln code and its structure, see
Sections 11.6.3 and 11.6.4 (respectively).

12.4. Open a Handle to the Kernel Plugin

To open ahandle to aKernel Plugln driver, WD_Ker nel Pl ugl n() (seethe WinDriver

PCI Low-Level API Reference) needs to be called from the user mode. This low-level

function is called both from WDC_Ker nel Pl ugl nOpen() [B.3.19], and from the

WDC_ xxxDevi ceOpen() functions (PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14]) — when
they are called with the name of aKernel Plugln driver.

When using the high-level WDC API [B.2] you can use either of the following methods to open a
Kernel Plugin handle:

» First open aregular device handle — by calling the relevant WDC_xxxDevi ceOpen()
function without the name of a Kernel Plugin driver. Then call WDC_Ker nel Pl ugl nOpen(),
passing to it the handle to the opened device. WDC_Ker nel Pl ugl nOpen() opens ahandle
to the Kernel Plugin driver, and stores it within the ker Pl ug field of the provided device
structure [B.4.3].

» Open ahandle to the device, using the relevant WDC _xxxDevi ceOpen() function, and pass
the name of a Kernel Plugln driver within the function's pc KPDr i ver Nane parameter. The
device handle returned by the function will also contain (within the ker Pl ug field) aKernel
Plugln handle opened by the function.

. This method cannot be used to open a handle to a 64-bit Kernel Plugin driver from a
U 32-bit application, or to open aKernel Plugin handle from a.NET application.

&) To ensure that your code works correctly in all the supported configurations, use the first
= method described above,

The generated DriverWizard and the sample pci_diag shared library (xxx_lib.c/ pci_lib.c)
demonstrate how to open a handle to the Kernel Plugln — see the generated/sample

XXX _Devi ceOpen()/PCl _Devi ceOpen() library function (which is called from the
generated/sample xxx_diag/pci_diag user-mode application).

© 2015 Jungo Connectivity Ltd. 114 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

The handle to the Kernel Plugin driver is closed when the WD_Ker nel Pl ugl nCl ose()
function (seethe WinDriver PCI Low-Level APl Reference) iscaled from the user mode.
When using the low-level WinDriver API, thisfunction is called directly from the user-mode
application. When using the high-level WDC API [B.2], the function is called automatically
when calling WDC _xxxDevi ced ose() (PCI [B.3.15] / PCMCIA [B.3.16] / ISA [B.3.17])
with adevice handle that contains an open Kernel Plugln handle. The function is also called by
WinDriver as part of the application cleanup, for any identified open Kernel Plugin handles.

12.5. Set Interrupt Handling in the Kernel
Plugin

1. When calling WDC _I nt Enabl e() [B.3.48] (after having opened a handle to the Kernel
Plugln driver, as explained in Section 12.4), set the f UseKP function parameter to TRUE to
indicate that you wish to enable interrupts in the Kernel Plugin driver with which the device
was opened.

The generated DriverWizard and the sample pci_diag shared library (xxx_lib.c

/ pci_lib.c) demonstrate how this should be done — see the generated/sample

XXX_I nt Enabl e()/PCI _I nt Enabl e() library function (which is called from the
generated/sample xxx_diag/pci_diag user-mode application).

If you are not using the WDC_xxx API [B.2], in order to enable interruptsin the

Kernel Plugincal VWD_I nt Enabl e() or I nt er r upt Enabl e() (which cals

WD _I nt Enabl e()), and pass the handle to the Kernel Plugln driver that you received
from\WD_Ker nel Pl ugl nOpen() (within the hKer nel Pl ugl n field of the
WD_KERNEL_PLUG N structure that was passed to the function). For details regarding these
APIs, refer to the WinDriver PCI Low-Level API Reference.

2. When calling WDC _| nt Enabl e() /I nt er r upt Enabl e() / WD_I nt Enabl e(), to
enable interrupts in the Kernel Plugin, WinDriver will activate your Kernel Plugin's
KP_I nt Enabl e callback function [B.6.6]. Y ou can implement this function to set the
interrupt context that will be passed to the high-IRQL and DPC Kernel Plugln interrupt
handler routines, as well aswrite to the device to actually enable the interruptsin the
hardware, for example, or implement any other code required in order to correctly enable
your device'sinterrupts.

3. Move the implementation of the user-mode interrupt handler, or the relevant portions
of thisimplementation, to the Kernel Plugin'sinterrupt handler functions. High-priority
code, such as the code for acknowledging (clearing) level-sensitive interrupts, should be
moved to the relevant high-IRQL handler — KP_I nt At | r gl [B.6.8] (legacy interrupts)
or KP_I nt At I rgl MSI [B.6.10] (MSI/MSI-X) — which runs at high interrupt request
level. Deferred processing of the interrupt can be moved to the relevant DPC handler —
KP_I nt At Dpc [B.6.9] or KP_I nt At DpcMSI [B.6.11] — which will be executed once
the high-IRQL handler completesit processing and returns TRUE. Y ou can also modify the
code to make it more efficient, due to the advantages of handling the interrupts directly in
the kernel, which provides you with greater flexibility (e.g., you can read from a specific
register and write back the value that was read, or toggle specific register bits). For a

© 2015 Jungo Connectivity Ltd. 115 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

detailed explanation on how to handle interruptsin the kernel using a Kernel Plugin, refer to
Section 11.6.5 of the manual.

12.6. Set I/0 Handling in the Kernel Pluglin

1. Move your 1/0 handling code (if needed) from the user mode to the Kernel Plugln message
handler — KP_Cal | [B.6.4].

2. To activate the kernel code that performs the I/0O handling from the user mode, call
WDC_Cal | Ker Pl ug() [B.3.20] or the low-level WD_Ker nel Pl ugl nCal | () function
(seethe WinDriver PCI Low-L evel API Reference) with arelevant message for each of the
different functionality that you wish to perform in the Kernel Plugin.
Implement a different message for each functionality.

3. Define these messages in a header file that is shared by the user-mode application (which will
send the messages) and the Kernel Plugin driver (that implements the messages).
In the sample/generated DriverWizard Kernel Plugln projects, the message | Ds and other
information that should be shared by the user-mode application and Kernel Plugln driver are
defined inthe pci_lib.h/xxx_lib.h shared library header file.

12.7. Compile Your Kernel Plugin Driver

The Kernel Pluglin is not backwards compatible. Therefore, when switching to a different
version of WinDriver, you need to rebuild your Kernel Plugin driver using the new version.

12.7.1. Windows Kernel Plugln Driver Compilation

The sample WinDriver\samples\pci_diag\kp_pci Kernel Plugln directory and the generated
DriverWizard Kernel Plugin <project_dir>\ker mode directory (where <project_dir> isthe
directory in which you selected to save the generated driver project) contain the following
Kernel Plugln project files (where xxx is the driver name — pci for the sample / the name you
selected when generating the code with the wizard):

« x86 — 32-bit project files:

* msdev_<version>\kp_xxx.vcproj — 32-bit MS Visua Studio project file (where <version>
signifiesthe IDE version — e.g., "2012")

» win_gcc/makefile — 32-bit Windows GCC (MinGW/Cygwin) makefile
* amd64 — 64-bit project files:

* msdev_<version>\kp_xxx.vcproj — 64-bit MS Visua Studio project file (where <version>
signifiesthe IDE version — e.g., "2012")

» win_gcc/makefile — 64-bit Windows GCC (MinGW/Cygwin) makefile

© 2015 Jungo Connectivity Ltd. 116 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

The sample WinDriver\samples\pci_diag directory and the generated <pr oject_dir> directory
contain the following project files for the user-mode application that drives the respective Kernel
Plugln driver (where xxx is the driver name — pci for the sample/ the name you selected when
generating the code with the wizard):

« x86 — 32-bit project files:

* msdev_<version>\xxx_diag.vcproj — 32-bit MS Visua Studio project file (where
<version> signifiesthe IDE version — e.g., "2012")

» win_gcc/makefile — 32-bit Windows GCC (MinGW/Cygwin) makefile
» amd64 — 64-bit project files:

* msdev_<version>\xxx_diag.vcproj — 64-bit MS Visua Studio project file (where
<version> signifiesthe IDE version — e.g., "2012")

» win_gcc/makefile — 64-bit Windows GCC (MinGW/Cygwin) makefile

The msdev_<version> MS Visua Studio directories listed above aso contain xxx_diag.sin
solution files that include both the Kernel Plugln and user-mode projects.

If you used DriverWizard to generate your code and you selected to generate a dynamic-

link library (DLL) (Step 6.c), the generated <project_dir> directory will also have alibpr o]
DLL project directory. This directory has x86 (32-bit) and/or amd64 (64-bit) directories that
contain msdev_<ver sion> directories for your selected IDES, and each IDE directory has an
xxx_libapi.vcproj project file for building the DLL. The DLL isused from the wizard-generated
user-mode diagnostics project (xxx_diag.veproj).

To build your Kernel Plugin driver and respective user-mode application on Windows, follow
these steps:

1. Verify that the Windows Driver Kit (WDK) isinstalled.

2. Set the BASEDIR environment variable to point to the location of the directory in which
WDK isinstalled.

3. BuildtheKernel Plugin SYSdriver (kp_pci.sys— sample/ kp_xxx.sys — wizard-
generated code):

* Using MSVisual Studio — Start Microsoft Visual Studio, and do the following:

a. From your driver project directory, open the Visua Studio Kernel Plugln solution
file— <project_dir>\msdev_<version>\xxx_diag.sln, where <project_dir> isyour
driver project directory (pci_diag for the sample code / the directory in which you
selected to save the generated DriverWizard code), msdev_<version> isyour target
Visual Studio directory (e.g., msdev_2012), and xxx is the driver name (pci for the
sample / the name you selected when generating the code with the wizard).

© 2015 Jungo Connectivity Ltd. 117 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

* When using DriverWizard to generate code for MS Visua Studio, you can
use the IDE to Invoke option to have the wizard automatically open the
generated solution file in your selected IDE, after generating the code files.

» To successfully build aKernel Plugln project using MS Visua Studio, the
path to the project directory must not contain any spaces.

b. Set the Kernel Plugin project (kp_pci.vcproj / kp_xxx.vcproj) asthe active project.

c. Select the active configuration for your target platform: From the Build menu, choose
Configuration Manager ..., and select the desired configuration.

To build the driver for multiple operating systems, select the lowest OS version
that the driver must support. For example, to support Windows XP and higher
(32-bit), select either Win32 winxp free (release mode) or Win32 winxp
checked (debug mode).

d. Build your driver: Build the project from the Build menu or using the relevant
shortcut key (e.g., F7 in Visual Studio 2008).

» Using Windows GCC — Do the following from your selected Windows GCC
development environment (MinGW/Cygwin):

a. Change directory to your target Windows GCC Kernel Pluglin project directory —
<project_dir>/<kernel_dir>/<CPU>/win_gcc, where <project_dir> isyour driver
project directory (pci_diag for the sample code/ the directory in which you selected
to save the generated DriverWizard code), <kernel_dir> isthe project's Kernel Plugin
directory (kp_pci for the sample code / kermode for the generated code), and <CPU>
isthe target CPU architecture (x86 for x86 platforms, and amd64 for x64 platforms).

For example:

* When building a 32-bit version of the sample KP_PCI driver —
$ cd WnDriver/sanpl es/ pci _di ag/ kp_pci /x86/w n_gcc

* When building a 64-bit wizard-generated Kernel Plugin driver —
$ cd <project_dir>/kernode/ and64/ wi n_gcc
— where <project_dir> signifies the path to your generated DriverWizard project
directory (for example, ~WinDriver/wizard/my_projectsmy_kp).

b. Edit the ddk_make.bat command in the Kernel Plugin makefile, to set the desired
build configuration — namely, the target OS and build mode (release — f r ee,
or debug — checked). By default, the WinDriver sample and wizard-generated
makefiles set the target OS parameter to Windows XP (Wi nxp for 32-bit / x64 for
64-bit), and the build mode to release (f r ee).

© 2015 Jungo Connectivity Ltd. 118 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

» Theddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the build
command. Run ddk _nmake. bat with no parametersto view the available
options for this utility.

» The selected build OS must match the CPU architecture of your WinDriver
installation. For example, you cannot select the 64-bit wi n7_x64 OSflag
when using a 32-bit WinDriver installation.

* To build the driver for multiple operating systems, select the lowest OS
version that the driver must support. For example, to support Windows XP
and higher, set the OS parameter tow nxp (for 32-bit) or x64 (for 64-bit).

c. Build the Kernel Plugin driver using the make command.

4. Build the user-mode application that drivesthe Kernel Plugin driver (pci_diag.exe —
sample / xxx_diag.exe — wizard-generated code):

» Using MS Visual Studio —

1. Set the user-mode project (pci_diag.vcproj — sample/ xxx_diag.vcproj — wizard-
generated code) as the active project.

2. Build the application: Build the project from the Build menu or using the relevant
shortcut key (e.g., F7 in Visual Studio 2008).

» Using Windows GCC — Do the following from your selected Windows GCC
development environment (MinGW/Cygwin):

a. Change directory to your target Windows GCC application directory —
<project_dir>/<CPU>/win_gcc, where <project_dir> isyour driver project
directory (pci_diag for the sample code / the directory in which you selected to save
the generated DriverWizard code), and <CPU> isthe target CPU architecture (x86 for
x86 platforms, and amd64 for x64 platforms).

For example:

* When building a 32-bit version of the sample pci_diag application, which drives the
sample KP_PCI driver —
$ cd WnDriver/sanpl es/ pci _di ag/ x86/wi n_gcc

* When building a 64-bit wizard-generated user-mode application that drivers a
wizard-generated Kernel Plugin driver —
$ cd <project_dir>/and64/w n_gcc
— where <project_dir> signifies the path to your generated DriverWizard project
directory (for example, ~/WinDriver/wizard/my_projectsmy_kp).

b. Build the application using the make command.

© 2015 Jungo Connectivity Ltd. 119 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

12.7.2. Linux Kernel Plugln Driver Compilation

To build your Kernel Plugln driver and respective user-mode application on Linux, follow these
steps:

1. Open ashell terminal.
2. Change directory to your Kernel Pluglin directory.
For example:

* When building the sasmple KP_PCI driver —
$ cd WnDriver/sanpl es/ pci _di ag/ kp_pci

» When building awizard-generated Kernel Plugin driver —
$ cd <project_dir>/kernode/linux/
— where <project_dir> signifies the path to your generated DriverWizard project
directory (for example, ~/WinDriver/wizard/my_projectsmy_kp).

3. Generate the makefile using the configur e script:
$./configure

If you have renamed the WinDriver kernel module [15.2], be sure to uncomment
U the following line in your Kernel Plugln configuration script (by removing the

pound sign — "#"), before executing the script, in order to build the driver with the

- DWD_DRI VER_NAME_CHANGE flag (see Section 15.2.2, Step 3):

ADDI TI ONAL_FLAGS="- DWD_DRI VER NAME_CHANGE"

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with the
--w t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full pathto
the kernel source directory — e.g., /usr/src/linux.

* If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use of
kbuild on earlier versions of Linux, by executing the configuration script with the
- - enabl e- kbui | d flag.

For afull list of the configuration script options, use the - - hel p option:
./lconfigure --help

4. Build the Kernel Plugin module using the make command.
This command creates a new L INUX.<kernel version>.<CPU> directory, which contains
the created kp_xxx_module.o/.ko driver.

© 2015 Jungo Connectivity Ltd. 120 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

5. Change directory to the directory that holds the makefile for the sample user-mode
diagnostics application.

For the KP_PCI sample driver —
$ cd ../LINUX

For the generated DriverWizard Kernel Plugln driver —
$cd../../linux/

6. Compile the sample diagnostics program using the make command.

12.8. Install Your Kernel Plugin Driver

12.8.1. Windows Kernel Plugln Driver Installation

; Driver installation on Windows requires administrator privileges.

1. Copy thedriver file (xxx.sys) to the target platform's drivers directory:
% windir%\system32\drivers (e.g., C:\WINDOW S\system32\drivers).

2. Register/load your driver, using the wdr eg.exe or wdreg_gui.exe utility:

In the following instructions, KP_NAM E stands for your Kernel Plugin driver's name,
without the .sys extension.

Toinstall your driver, run this command:
WnDriver\util> wdreg -name KP_NAME install

.- Kernel Plugin drivers are dynamically loadable — i.e., they can be loaded and unloaded
‘-’ without reboot. For additional information, refer to Section 13.2.3.

© 2015 Jungo Connectivity Ltd. 121 CONFIDENTIAL

Chapter 12. Creating a Kernel Plugln Driver

12.8.2. Linux Kernel Plugln Driver Installation

1. Change directory to your Kernel Plugln driver directory.

For example, when installing the sasmple KP_PCI driver, run
$ cd WnDriver/sanpl es/ pci _di ag/ kp_pci

When installing adriver created using the Kernel Plugin files generated by DriverWizard,
run the following command, where <path> signifies the path to your generated DriverWizard
project directory (e.g., ~WinDriver/wizard/my_projectsmy_kp):

$ cd <pat h>/ ker node/

2. Execute the following command to install your Kernel Plugin driver:

; Thefollowing command must be executed with root privileges.

make install

| Kernel Plugin drivers are dynamically loadable — i.e., they can be loaded and unloaded
d without reboot. For additional information, refer to Section 13.3.1.

© 2015 Jungo Connectivity Ltd. 122 CONFIDENTIAL

Chapter 13
Dynamically Loading Your Driver

13.1. Why Do You Need a Dynamically
Loadable Driver?

When adding a new driver, you may be required to reboot the system in order for it to load your
new driver into the system. WinDriver isadynamically loadable driver, which enables your
customersto start your application immediately after installing it, without the need for reboot.

Y ou can dynamically load your driver whether you have created a user-mode or a kernel-mode
(Kernel Plugin [11]) driver.

To successfully unload your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 15.2), and that
there are no connected and enabled Plug-and-Play devices that are registered with this
service.

13.2. Windows Dynamic Driver Loading

Windows XP and higher uses Windows Driver Model (WDM) drivers[2.3.1]: Files with the
extension *.sys (e.g., windrvr 6.sys).
WDM drivers areinstalled viathe installation of an INF file (see below).

The WinDriver Windows kernel module — windrvr6.sys— isafully WDM driver, which can
be installed using the wdr eg utility, as explained in the following sections.

13.2.1. The wdreg Utility

WinDriver provides a utility for dynamically loading and unloading your driver, which replaces
the slower manual process using Windows' Device Manager (which can still be used for the
device INF). This utility is provided in two forms: wdreg and wdreg_gui. Both versions can be
found in the WinDriver\util directory, can be run from the command line, and provide the same
functionality. The differenceisthat wdreg_gui displays installation messages graphically, while
wdr eg displays them in console mode.

This section describes the use of wdreg/ wdreg_gui on Windows operating systems.

© 2015 Jungo Connectivity Ltd. 123 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

1. wdreg is dependent on the Driver Install Frameworks APl (DIFXAPI) DLL —
difxapi.dll, unless when run with the - conpat option (described below). difxapi.dll
is provided under the WinDriver\util directory.

2. The explanations and examples below refer to wdr eg, but any references to wdreg can
be replaced with wdreg_gui.

13.2.1.1. WDM Drivers

This section explains how to use the wdr eg utility to install the WDM windrvr 6.sys driver, or to
install INF files that register Plug-and-Play devices (such as PCI or PCMCIA) to work with this
driver, on Windows.

@3, You can rename the windrvr 6.sys kernel module and modify your device INF file to

U register with your renamed driver, as explained in Section 15.2.1. To install your modified
INF files using wdr eg, simply replace any references to windrvr 6 below with the name of
your new driver.

This section isnot relevant for Kernel Plugln drivers, since these are not WDM drivers
and are not installed viaan INF file. For an explanation on how to use wdr eg to install
Kernel Plugln drivers on Windows, refer to Section 13.2.1.2.

Usage: The wdreg utility can be used in two ways as demonstrated bel ow:

1. wdreg -inf <filename> [-silent] [-log <logfile>]
[install | preinstall | uninstall | enable | disable]

2.wdreg -rescan <enunerator> [-silent] [-log <logfile>]

* OPTIONS
wdr eg supports several basic OPTIONS from which you can choose one, some, or none:

« -inf — The path of the INF file to be dynamically installed.

« -rescan <enumer ator > — Rescan enumerator (ROOT, ACPI, PCI, etc.) for hardware
changes. Only one enumerator can be specified.

« -Sllent — Suppress display of all messages (optional).
« -log <logfile> — Log all messages to the specified file (optional).

« -compat — Usethe traditional SetupDi API instead of the newer Driver Install Frameworks
APl (DIFXAPI).

» ACTIONS
wdr eg supports several basic ACTIONS:

© 2015 Jungo Connectivity Ltd. 124 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

« ingtall — Installsthe INF file, copies the relevant filesto their target locations, and
dynamically loads the driver specified in the INF file name by replacing the older version (if
needed).

« preinstall Pre-installsthe INF file for a non-present device.

= uninstall — Removes your driver from the registry so that it will not load on next boot (see
note below).

« enable— Enablesyour driver.

« disable — Disables your driver, i.e., dynamically unloadsit, but the driver will reload after
system boot (see note below).

To successfully disable/uninstall your driver, make sure that there are no open handles to
the WinDriver service (windrvr6.sys or your renamed driver (refer to Section 15.2), and
that there are no connected and enabled Plug-and-Play devicesthat are registered with this
service.

13.2.1.2. Non-WDM Drivers

This section explains how to use the wdr eg utility to install non-WDM drivers, namely Kernel
Plugln drivers, on Windows.

Usage:

wdreg [-file <filename>] [-name <drivernanme>] [-startup <l evel >]
[-silent] [-log <logfile>] Action [Action ...]

* OPTIONS

wdr eg supports several basic OPTIONS from which you can choose one, some, or none:
« -Startup: Specifies when to start the driver. Requires one of the following arguments:

» boot: Indicates adriver started by the operating system loader, and should only be used for
driversthat are essential to loading the OS (for example, Atdisk).

» system: Indicates adriver started during OS initialization.

» automatic: Indicates adriver started by the Service Control Manager during system
startup.

» demand: Indicates a driver started by the Service Control Manager on demand (i.e., when
your device is plugged in).

= disabled: Indicates adriver that cannot be started.

. Thedefault setting for the -startup option is automatic.

© 2015 Jungo Connectivity Ltd. 125 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

-name — Sets the symbolic name of the driver. This name is used by the user-mode
application to get a handle to the driver. Y ou must provide the driver's symbolic name
(without the * .sys extension) as an argument with this option. The argument should be
equivalent to the driver name as set inthe KP_I ni t [B.6.1] function of your Kernel Plugln
project: st rcpy(kpl ni t->cDri ver Name, XX DRI VER NAME) .

-file— wdreg allows you to install your driver in the registry under a different name than
the physical file name. This option sets the file name of the driver. Y ou must provide the
driver's file name (without the *.sys extension) as an argument.

wdreg looks for the driver in the Windows installation directory
(Y%owindir%\system32\drivers). Therefore, you should verify that the driver file islocated
in the correct directory before attempting to install the driver.

Usage:
wdr eg -nanme <Your new driver nanme> -file <Your original driver
name> install

-silent — Suppresses the display of messages of any kind.

-log <logfile> — Logs all messages to the specified file.

+ ACTIONS
wdr eg supports several basic ACTIONS:

create — Instructs Windows to load your driver next time it boots, by adding your driver to
theregistry.

delete — Removes your driver from the registry so that it will not load on next boot.

start — Dynamically loads your driver into memory for use. Y ou must create your driver
before starting it.

stop — Dynamically unloads your driver from memory.

 Shortcuts
wdr eg supports afew shortcut operations for your convenience:

install — Creates and starts your driver.

Thisisthe same asfirst using the wdreg st op action (if aversion of the driver is currently
loaded) or the wdreg cr eat e action (if no version of the driver is currently loaded), and
thenthewdreg st art action.

preinstall — Creates and starts your driver for a non-connected device.
uninstall — Unloads your driver from memory and removes it from the registry so that it

will not load on next boot.
Thisisthe same asfirst using the wdreg st op action and then the wdreg del et e action.

© 2015 Jungo Connectivity Ltd. 126 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

13.2.2. Dynamically Loading/Unloading
windrvr6é.sys INF Files

When using WinDriver, you develop a user-mode application that controls and accesses your
hardware by using the generic windrvr6.sys driver (WinDriver's kernel module). Therefore, you
might want to dynamically load and unload the driver windrvr 6.sys — which you can do using
wdreg.

In addition, in WDM -compatible operating systems, you also need to dynamically load INF files
for your Plug-and-Play devices. wdr eg enables you to do so automatically on Windows.

This section includes wdr eg usage examples, which are based on the detailed description of
wdr eg contained in the previous section. Examples:

» Toload windrvr6.inf and start the windrvr 6.sys service —
wdreg -inf <path to windrvr6.inf> install

» Toload an INF file named device.inf, located in the c:\tmp directory —
wdreg -inf c:\tnp\device.inf install

You canreplacethei nst al | option in the example above with pr ei nst al | to pre-install
the device INF file for adevice that is not currently connected to the PC.

If the installation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE

\ M cr osof t \ Wndows\ Curr ent Ver si on. Thisregistry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

To unload the driver/INF file, use the same commands, but simply replacei nst al | inthe
examples above withuni nst al | .

13.2.3. Dynamically Loading/Unloading Your
Kernel Pluglin Driver

If you used WinDriver to develop aKernel Plugln driver [11], you must load this driver only after
loading the generic WinDriver driver — windrvr6.sys.
When unloading the drivers, unload your Kernel Pluglin driver before unloading windrvr 6.sys.

Kernel Plugin drivers are dynamically loadable — i.e., they can be loaded and unloaded without
reboot. To load/unload your Kernel Plugin driver (<Your driver name>.sys) use the wdreg
command as described above for windrvr6, with the addition of the 'name’ flag, after which you
must add the name of your Kernel Plugln driver.

; You should not add the *.sys extension to the driver name.

© 2015 Jungo Connectivity Ltd. 127 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

Examples:

» Toload aKernel Plugin driver called KPDriver.sys, run this command:
wdreg -nanme KPDriver install

* Toload aKernel Plugin driver called MPEG_Encoder, with file name MPEGENC.sys, run
this command:
wdr eg - name MPEG Encoder -file MPEGENC i nstall

» Touninstall aKernel Plugin driver called KPDriver.sys, run this command:
wdreg -nanme KPDriver uninstall

» Touninstall aKernel Plugin driver called MPEG_Encoder, with file name MPEGENC.sys, run
this command:
wdr eg - name MPEG Encoder -file MPEGENC uni nstall

13.3. Linux Dynamic Driver Loading

; Thefollowing commands must be executed with root privileges.

* Todynamicaly load WinDriver, run the following command:
<path to wdreg> wi ndrvr6

* Todynamically unload WinDriver, run the following command:
[sbi n/ mrodprobe -r w ndrvr6.

wdreg is provided in the WinDriver/util directory.

k ,, To automatically load WinDriver on each boot, add the following line to the target's Linux
- boot file (for example, /etc/rc.local):
<path to wdreg> wi ndrvr6

13.3.1. Dynamically Loading/Unloading Your
Kernel Pluglin Driver
If you used WinDriver to develop aKernel Plugln driver [11], you must load this driver only after

loading the generic WinDriver driver — windrvr 6.0/.ko.
When unloading the drivers, unload your Kernel Plugin driver before unloading windrvr 6.0/ .ko.

© 2015 Jungo Connectivity Ltd. 128 CONFIDENTIAL

Chapter 13. Dynamically Loading Your Driver

Kernel Plugin drivers are dynamically loadable — i.e., they can be loaded and unloaded without
reboot. Use the following commands to dynamically load or unload your Kernel Pluglin driver.

; Thefollowing commands must be executed with root privileges.

. xxx in the commands signifies your selected Kernel Plugln driver project name.

» Todynamically load your Kernel Plugin driver, run this command:
[sbin/insnpbd <path to kp_xxx_nodul e. o/ . ko>

. When building the Kernel Pluglin driver on the development machine, the
Kernel Plugin driver module is created in your Kernel Plugln project's
kermode/linux/LINUX.<kernel version>.<CPU> directory (see Section 12.7.2, Step 4).
When building the driver on atarget distribution machine, the driver module is normally
created in an xxx_installation/redist/L INUX.<kernel version>.<CPU>.KP directory
(see Section 14.4.3, Step 2).

» Todynamically unload your Kernel Plugln, run this command:
[sbin/rmmod kp_xxx_nodul e

&) To automatically load your Kernel Plugln driver on each boot, add the following line to
- thetarget's Linux boot file (for example, /etc/rc.local), after the WinDriver driver module
(windrvr6) load command (replace <path to kp_xxx_module.o/.ko> with the path to your
Kernel Plugin driver module):
/ sbin/insnmod <path to kp_xxx_nodul e. o/ . ko>

13.4. Windows CE Dynamic Driver Loading

The WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe utility can be used for loading
the WinDriver kernel module (windrvr6.dll) on a Windows CE platform.

©) On many versions of Windows CE, the operating system'’s security scheme prevents the
- loading of unsigned drivers at boot time, therefore the WinDriver kernel module has to be
reloaded after boot. To load WinDriver on the target Windows CE platform every time the
OS s started, copy the wdr eg.exe utility to the Windows\StartUp directory on the target

PC.

The source code of the Windows CE wdr eg.exe utility is available under the
WinDriver\samples\wince_install\wdr eg directory on the development PC.

© 2015 Jungo Connectivity Ltd. 129 CONFIDENTIAL

Chapter 14
Distributing Your Driver

Read this chapter in the final stages of driver development. It will guide you in preparing
' your driver for distribution.

14.1. Getting a Valid WinDriver License

Before distributing your driver you must purchase a WinDriver license, asoutlined in

Appendix E.

Then install the registered version of WinDriver on your development machine by following the
installations in Section 3.2. If you have already installed an evaluation version of WinDriver, you
can jump directly to the installation steps for registered users to activate your license.

To register code devel oped during the evaluation period of WinDriver, follow the instructionsin
Section 3.3.

14.2. Windows Driver Distribution

 All references to wdr eg in this section can be replaced with wdreg_gui, which offers
the same functionality as wdreg but displays GUI messages instead of console-mode

messages.

* If you have renamed the WinDriver kernel module (windrvr6.sys), as explained in
Section 15.2, replace the relevant windr vr 6 references with the name of your driver,
and replace references to the WinDriver\redist directory with the path to the directory
that contains your modified installation files. For example, when using the generated
DriverWizard renamed driver filesfor your driver project, as explained in Section 15.2.1,
you can replace references to the WinDriver\redist directory with referencesto the
generated xxx_installation\redist directory (where xxx is the name of your generated
driver project). Note also the option to simplify the installation using the generated
DriverWizard xxx_install.bat script and the copies of the WinDriver\util installation
filesin the generated xxx_installation\redist directory, as explained in Section 15.2.1.

* If you have created new INF and/or catalog files for your driver, replace the referencesto
the original WinDriver INF files and/or to the wd1180.cat catalog file with the names of
your new files (see the file renaming information in Sections 15.2.1 and 15.3.2).

© 2015 Jungo Connectivity Ltd. 130 CONFIDENTIAL

Chapter 14. Distributing Your Driver

Distributing the driver you created is a multi-step process. First, create a distribution package
that includes all the files required for the installation of the driver on the target computer.
Second, install the driver on the target machine. Thisinvolvesinstalling windrvr6.sys and
windrvr6.inf, installing the specific INF file for your device (for Plug-and-Play hardware —
PCI/PCI ExpresssPCMCIA), and installing your Kernel Plugln driver (if you have created one).

Finally, you need to install and execute the hardware-control application that you devel oped with
WinDriver. These steps can be performed using wdr eg utility.

14.2.1. Preparing the Distribution Package

Prepare a distribution package that includes the following files.

If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare separate distribution packages for each platform. The required files for each
package are provided in the WinDriver installation directory for the respective platform.

* Your hardware-control application/DLL.

e windrvr6.sys.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

e windrvr6.inf.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

e wd1180.cat.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wdapil1180.dll (for distribution of 32-bit binariesto 32-bit target platforms or for distribution
of 64-bit binariesto 64-bit platforms) or wdapil1180 32.dll (for distribution of 32-bit binaries
to 64-bit platforms[A.2].

Get thisfile from the WinDriver\redist directory of the WinDriver package.

« difxapi.dll (required by the wdreg.exe utility [13.2.1]).
Get thisfile from the WinDriver\util directory of the WinDriver package.

* AnINFfilefor your device (required for Plug-and-Play devices, such as PCI and PCMCIA).
Y ou can generate this file with DriverWizard, as explained in Section 4.2.

* If you have created a Kernel Plugln driver [11]: Your Kernel Plugln driver —
<KP driver name>.sys.

14.2.2. Installing Your Driver on the Target
Computer

Driver installation on Windows requires administrator privileges.

© 2015 Jungo Connectivity Ltd. 131 CONFIDENTIAL

Chapter 14. Distributing Your Driver

Follow the instructions below in the order specified to properly install your driver on the target
computer:

* Preliminary Steps:
To successfully install your driver, make sure that there are no open handles to the WinDriver
service (windrvr6.sys or your renamed driver (refer to Section 15.2), and that there are no
connected and enabled Plug-and-Play devices that are registered with this service. Thisis
relevant, for example, when upgrading the version of the driver (for WinDriver v6.0.0 and
above; earlier versions used a different module name). If the service is being used, attempts
to install the new driver using wdreg will fail. Y ou can disable or uninstall connected devices
from the Device Manager (Properties | Disable/Uninstall) or using wdr eg, or otherwise
physically disconnect the device(s) from the PC.

* |nstall WinDriver'skernel module;

1. Copy windrvr6.sys, windrvr6.inf, and wd1180.cat to the same directory.

wd1180.cat contains the driver's Authenticode digital signature. To maintain the
signature's validity this file must be found in the same installation directory as the
windrvr6.inf file. If you select to distribute the catalog and INF files in different
directories, or make any changes to these files or to any other files referred to by the
catalog file (such as windrvr 6.sys), you will need to do either of the following:

» Create anew catalog file and re-sign the driver using thisfile.

» Comment-out or remove the following line in the windrvr 6.inf file:
Cat al ogFi | e=wd1180. cat
and do not include the catalog file in your driver distribution. However, note that
this option invalidates the driver's digital signature.

For more information regarding driver digital signing and certification and the
signing of your WinDriver-based driver, refer to Section 15.3 of the manual.

2. Usethe utility wdreg to install WinDriver's kernel module on the target computer:
wdreg -inf <path to windrvr6.inf> install

For example, if windrvr6.inf and windrvr 6.sys arein the d:\MyDevice directory on the
target computer, the command should be:
wdreg -inf d:\MyDevice\w ndrvr6.inf install

Y ou can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For ageneral description of this utility and its usage, please refer to Chapter 13.

» wadreg is dependent on the difxapi.dll DLL.

» wdreg isaninteractive utility. If it fails, it will display a message instructing the
user how to overcome the problem. In some cases the user may be asked to reboot
the computer.

"
1

© 2015 Jungo Connectivity Ltd. 132 CONFIDENTIAL

Chapter 14. Distributing Your Driver

@ When distributing your driver, you should attempt to ensure that the installation

does not overwrite a newer version of windrvr6.sys with an older version of
the filein Windows drivers directory (%o windir % \system32\drivers) — for
example, by configuring your installation program (if you are using one) or
your INF file so that the installer automatically compares the time stamp on
these two files and does not overwrite a newer version with an older one. The
provided windrvr 6.inf file usesthe COPYFLG_NO_VERSI ON_DI ALOGdirective,
which is designed to avoid overwriting afile in the destination directory with the
sourcefileif the existing file is newer than the source file. Thereisalso asimilar
COPYFLG_OVERWRI TE_OLDER_ONLY INF directive that is designed to ensure
that the sourcefileis copied to the destination directory only if the destination
fileis superseded by a newer version. Note, however, that both of these INF
directives are irrelevant to digitally signed drivers. As explained in the Microsoft
INF CopyFiles Directive documentation — http://msdn.microsoft.com/en-us/library/
ff546346%28v=vs.85%29.aspx — if adriver packageis digitaly signed, Windows
installs the package as a whole and does not selectively omit files in the package
based on other versions already present on the computer. The windrvr 6.sys driver
provided by Jungo is digitally signed (refer to Section 15.3 for more information).

* Ingtall the INF filefor your device (registering your Plug-and-Play device with
windrvr 6.sys):

Run the utility wdreg with thei nst al | command to automatically install the INF file and
update Windows Device Manager:
wdreg -inf <path to your INF file> install

Y ou can also use the wdreg utility'spr ei nst al | command to pre-install an INF file for a
device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

If theinstallation failswith an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur r ent Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install driversusing INF files. If the
RunOnce key ismissing, create it; then try installing the INF file again.

» Ingtall your Kernel Plugin driver: If you have created a Kernel Plugin driver, install it by
following the instructions in Section 14.2.3.

* Install wdapi1180.dll:
If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), copy this DLL to the target's
% windir % \system32 directory.
If you are distributing a 32-bit application/DLL to atarget 64-bit platform [A.2], rename
wdapil1180_32.dll in your distribution package to wdapi1180.dll, and copy the renamed file to
the target's % windir % \sysW OW 64 directory.

© 2015 Jungo Connectivity Ltd. 133 CONFIDENTIAL

http://msdn.microsoft.com/en-us/library/ff546346%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff546346%28v=vs.85%29.aspx

Chapter 14. Distributing Your Driver

If you attempt to write a 32-bit installation program that installs a 64-bit program, and
therefore copies the 64-bit wdapi1180.dll DLL to the % windir % \system32 directory,
you may find that the file is actually copied to the 32-bit % windir % \sysW OW 64
directory. The reason for thisis that Windows x64 platforms trans ate references to
64-bit directories from 32-bit commands into references to 32-bit directories. Y ou can
avoid the problem by using 64-bit commands to perform the necessary installation steps
from your 32-bit installation program. The system64.exe program, provided in the
WinDriver\redist directory of the Windows x64 WinDriver distributions, enables you to
do this.

 Install your hardware-control application/DLL: Copy your hardware-control application/
DLL tothetarget and runit!

14.2.3. Installing Your Kernel Plugin on the Target
Computer

; Driver installation on Windows requires administrator privileges.

If you have created aKernel Plugln driver, follow the additional instructions below:

1. Copy your Kernel Plugin driver (<KP driver name>.sys) to Windows drivers directory on
the target computer (% windir % \system32\drivers).

2. Usethe utility wdreg to add your Kernel Plugln driver to the list of device drivers Windows
loads on boot. Use the following installation command:

Toinstal aSY S Kernel Plugln Driver:
wdreg -nane <Your driver nanme, wthout the *.sys extension>
i nstall

Y ou can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For ageneral description of this utility and its usage, please refer to Chapter 13 (see
specifically Section 13.2.3 for Kernel Pluglin installation).

© 2015 Jungo Connectivity Ltd. 134 CONFIDENTIAL

Chapter 14. Distributing Your Driver

14.3. Windows CE Driver Distribution

14.3.1. Distribution to New Windows CE Platforms

The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with the
appropriate Windows CE plugin. The instructions use the notation ‘Windows CE IDE' to
refer to either of these platforms.

To distribute the driver you developed with WinDriver to a new target Windows CE platform,
follow these steps:

1. If you have not already done so, modify the project registry file —
WinDriver\samples\wince_install\project_wd.reg — to add an entry for your target device.

When defining 1D values, take care to use the correct format, as specified in the
project_wd.reg comments — hexadecimal in the case of PCI devices.

"
1

2. Compile your Windows CE platform (Sysgen stage).
3. Integrate the driver into your platform:
a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—
WinDriver\redist\<TARGET_CPU>\windrvr6.dll — to the
% FLATRELEASEDIR% subdirectory on the target development platform (should be
the current directory in the new command window).

d. Append the contents of WinDriver\samples\wince_install\project_wd.reg to the
% FLATRELEASEDIR%\project.regregistry file.

e. Copy the contents of the WinDriver\samples\wince install\project_wd.bib
file to the FILES section of the binary image builder file —
% FLATRELEASEDIR%\project.bib. Then uncomment the line that matches the
target platform (see the "TODQO" comments in the copied text).

This step is only necessary if you want the WinDriver CE kernel file
(windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using
aboot disk. If you prefer to have the file windrvr 6.dll loaded on demand via
the CESH/PPSH services, you do not need to perform this step until you build a
permanent kernel.

4. Select Make Run-Time Image from the Build menu to save the new image (NK.BIN).

© 2015 Jungo Connectivity Ltd. 135 CONFIDENTIAL

Chapter 14. Distributing Your Driver

5. Download your new kernel to the target platform and initialize it either by selecting
Attach Device from the Target menu, or by using a boot disk. For Windows CE 4.x, the
menu is called Download/I nitialize rather than Attach Device.

6. Restart your target CE platform. The WinDriver CE kernel will automatically load.

7. Install your hardware-control application/DLL on the target.
If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), also copy thisDLL from the
WinDriver\redist\WINCE\<TARGET_CPU> directory on the Windows host devel opment
PC to the target's Windows directory.

14.3.2. Distribution to Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

1. Copy WinDriver's kernel module — windrvr 6.dll — from the
WinDriver\redist\WINCE\<TARGET _CPU> directory on the Windows host devel opment
PC to the Windows directory on your target Windows CE platform.

2. Add WinDriver to the list of device drivers Windows CE loads on boot:

* Modify the registry according to the entries documented in the file
WinDriver\samples\wince_install\project_wd.reg. This can be done using the Windows
CE Pocket Registry Editor on the hand-held CE computer, or by using the Remote CE
Registry Editor Tool supplied with MS eMbedded Visual C++ or MS Visual Studio
2005/2008. Note that in order to use the Remote CE Registry Editor tool you will need to
have Windows CE Services installed on your Windows host platform.

When defining ID values, take care to use the correct format, as specified in the
project_wd.reg comments — hexadecimal in the case of PCI devices.

"
1

* On many versions of Windows CE, the operating system's security scheme prevents the
loading of unsigned drivers at boot time, therefore the WinDriver kernel module hasto
be reloaded after boot. To load WinDriver on the target Windows CE platform every time
the OS is started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe
utility to the Windows\Star tUp directory on the target PC.

3. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

4. Install your hardware-control application/DLL on the target.
If your hardware-control application/DLL uses wdapi1180.dll (asisthe case for the
sample and generated DriverWizard WinDriver projects), also copy thisDLL from the
WinDriver\redist\WINCE\<TARGET _CPU> directory on the development PC to the
target's Windows directory.

© 2015 Jungo Connectivity Ltd. 136 CONFIDENTIAL

Chapter 14. Distributing Your Driver

14.4. Linux Driver Distribution

To distribute your driver, prepare a distribution package containing the required files— as
outlined in Section 14.4.1 — and then build and install the required driver components on the
target — as outlined in Sections 14.4.2-14.4.4.

* If you have renamed the WinDriver driver module [15.2], replace references to windrvr6
in the following instructions with the name of your renamed driver module.

* Itisrecommended that you supply an installation shell script to automate the build and
installation processes on the target.

14.4.1. Preparing the Distribution Package

Prepare a distribution package containing the required files, as described in this section.

* If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare separate distribution packages for each platform. The required files for each
package are provided in the WinDriver installation directory for the respective platform.

* Inthefollowing instructions, <source_dir> represents the source directory from which
to copy the distribution files. The default source directory isyour WinDriver installation
directory. However, if you have renamed the WinDriver driver module [15.2], the source
directory isadirectory containing modified files for compiling and installing the renamed
drivers; when using DriverWizard to generate the driver code, the source directory for
the renamed driver is the generated xxx_installation directory, where xxx is the name of
your generated driver project (see Section 15.2.2, Step 1).

14.4.1.1. Kernel Module Components

Y our WinDriver-based driver relies on the windrvr 6.0/.ko kernel driver module, which
implements the WinDriver API. In addition, if you have created a Kernel Plugin driver [11],
the functionality of thisdriver isimplemented in akp_xxx_module.o/.ko kernel driver module
(where xxx isyour selected driver project name).

Y our kernel driver modules cannot be distributed as-is; they must be recompiled on each
target machine, to match the kernel version on the target. Thisis due to the following
reason: The Linux kernel is continuously under development, and kernel data structures
are subject to frequent changes. To support such a dynamic development environment,

and still have kernel stability, the Linux kernel developers decided that kernel modules
must be compiled with header filesidentical to those with which the kernel itself was
compiled. They enforce this by including a version number in the kernel header files, which
is checked against the version number encoded into the kernel. Thisforces Linux driver
developers to support recompilation of their driver with the target system's kernel version.

Following isalist of the components you need to distribute to enable compilation of your kernel
driver modules on the target machine.

© 2015 Jungo Connectivity Ltd. 137 CONFIDENTIAL

Chapter 14. Distributing Your Driver

It is recommended that you copy the files to subdirectories in the distribution directory

that match the source subdirectories, such asredist and include, except where otherwise
specified. If you select not do so, you will need to modify the file paths in the configuration
scripts and related makefile templates, to match the location of the filesin your distribution
directory.

» From the <source_dir>/include directory, copy windrvr.h, wd_ver.h, and windrvr_usb.h —
header files required for building the kernel modules on the target.
Note that windrvr_usb.h isrequired also for non-USB drivers.

» From the <WinDriver installation directory>/util directory (or from the generated
DriverWizard xxx_installation/redist directory), copy wdreg — ascript for loading the
WinDriver kernel driver module (see Section 13.3) — to the redist distribution directory.

» From the <source _dir>/redist directory, unless where otherwise specified, copy the following
files:

« setup_inst_dir — ascript for installing the WinDriver driver module, using wdr eg (see
above).

« linux_wrappers.c/.h — wrapper library source code files that bind the kernel module to the
Linux kernel.

« linux_common.h and wdusb_interface.n — header files required for building the kernel
modules on the target.
Note that wdusb_interface.h isrequired also for non-USB drivers.

« The compiled object code for building the WinDriver kernel driver module —
= windrvr_gcc_v3.a— for GCC v3.x.x compilation

» windrvr_gcc v3 regparm.a— for GCC v3.x.x compilation with the regparm flag

* windrvr_gcc v2.a— for GCC v2.x.x compilation; note that thisfileis not found in the
64-bit WinDriver installations, because 64-bit Linux architectures don't use GCC v2.

« Configuration scripts and makefile templates for creating makefiles for building and
installing the WinDriver kernel driver module.

Files that include .kbuild in their names use kbuild for the driver compilation.

= configure — aconfiguration script that uses the makefile.in template to create a makefile
for building and installing the WinDriver driver module, and executes the configur e.wd
script (see below).

» configure.wd — aconfiguration script that uses the makefile.wd[.kbuild].in template to
create amakefilewd[.kbuild] makefile for building the windrvr6.0/.ko driver module.

© 2015 Jungo Connectivity Ltd. 138 CONFIDENTIAL

Chapter 14. Distributing Your Driver

» makefilein — atemplate for the main makefile for building and installing the WinDriver
kernel driver module, using makefilewd[.kbuild].

» makefilewd.in and makefilewd.kdbuild.in — templates for creating
makefilewd[.kbuild] makefiles for building and installing the windrvr 6.0/.ko driver
module.

If you have created a Kernel Plugln driver [11] — copy the following files as well:
» From the generated DriverWizard xxx_installation/redist directory (where xxx is the name of

your driver project — see Section 15.2.2, Step 1), copy the following configuration script and
makefile templates, for creating a makefile for building and installing the Kernel Plugln driver.

If you did not generate your Kernel Plugln driver using the DriverWizard, copy the files
from your Kernel Plugln project; the files for the KP_PCI sample, for example, are
found in the WinDriver/samples/pci_diag/kp_pci directory.

Note: Before copying the files, rename them to add a".kp" indication — asin the
xxx_installation/redist file names listed below — in order to distinguish them from the
WinDriver driver module files. You will also need to edit the file names and paths in the
files, to match the structure of the distribution directory.

« configure.kp — aconfiguration script that uses the makefile.kp[.kbuild].in template (see
below) to create a makefile.kp makefile for building and installing the Kernel Plugln driver
module.

If you have renamed the WinDriver kernel module [15.2], be sure to uncomment
the following line in your Kernel Plugln configuration script (by removing the
pound sign — "#"), before executing the script, in order to build the driver with the
- DWD_DRI VER_NAME_CHANGE flag (see Section 15.2.2, Step 3):

ADDI TI ONAL_FLAGS="- DWD DRI VER NAME_CHANGE"

« makefilekp.in and makefile.kp.kbuild.in — templates for creating a makefile kp makefile
for building and installing the Kernel Plugln driver module.
The makefile created from makefile.kp.build.in uses kbuild for the compilation.
» From the <source_dir>/lib directory, copy the compiled WinDriver-API object code —
« Kp_wdapill80 gcc v3.a— for GCC v3.x.x compilation
« kp_wdapil180_gcc v3 regparm.a— for GCC v3.x.x compilation with the regparm flag

« Kp_wdapill80 gcc v2.a— for GCC v2.x.x compilation; note that thisfileis not found in
the 64-bit WinDriver installations, because 64-bit Linux architectures don't use GCC v2.

© 2015 Jungo Connectivity Ltd. 139 CONFIDENTIAL

Chapter 14. Distributing Your Driver

* From the kermode/linux/L INUX.<kernel version>.<CPU> directory that is created
when building the Kernel Plugin driver on the devel opment machine (see Section 12.7.2,
Step 4), copy to the lib distribution subdirectory the compiled object code for building your
Kernel Plugln driver module (where xxx is the name of your Kernel Plugln driver project) —

« kp_xxx_gcc_v3.a— for GCC v3.x.x compilation
« kp_xxx_gcc v3 regparm.a— for GCC v3.x.x compilation with the regparm flag

« kp_xxx_gcc_v2.a— for GCC v2.x.x compilation; note that thisfile is not found in the
64-bit WinDriver installations, because 64-bit Linux architectures don't use GCC v2.

14.4.1.2. User-Mode Hardware-Control Application or
Shared Object

Copy the user-mode hardware-control application or shared object that you created with
WinDriver, to the distribution package.

If your hardware-control application/shared object uses libwdapi1180.s0 — asisthe case

for the WinDriver samples and generated DriverWizard projects — copy thisfile from the
<source_dir>/lib directory to your distribution package.

If you are distributing a 32-bit application/shared object to atarget 64-bit platform [A.2] — copy
libwdapi1180 32.so from the WinDriver/lib directory to your distribution package, and rename
the copy to libwdapi1180.so.

Since your hardware-control application/shared object does not have to be matched against the
Linux kernel version number, you may distribute it as a binary object (to protect your code from
unauthorized copying). If you select to distribute your driver's source code, note that under the
license agreement with Jungo you may not distribute the source code of the libwdapi1180.s0
shared object, or the WinDriver license string used in your code.

14.4.2. Building and Installing the WinDriver Driver
Module on the Target
From the distribution package subdirectory containing the configur e script and related build and

installation files— normally the redist subdirectory [14.4.2] — perform the following steps to
build and install the driver module on the target:

© 2015 Jungo Connectivity Ltd. 140 CONFIDENTIAL

Chapter 14. Distributing Your Driver

1. Generate the required makefiles:
$./configure --disabl e-usb-support

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with the
--w t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full pathto
the kernel source directory — e.g., /usr/src/linux.

« If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use of
kbuild on earlier versions of Linux, by executing the configuration script with the
- - enabl e- kbui | d flag.

 For afull list of the configuration script options, use the - - hel p option:
./lconfigure --help

2. Build the WinDriver driver module:
$ make

Thiswill create aLINUX.<kernel version>.<CPU> directory, containing the newly
compiled driver module — windrvr 6.0/.ko.

3. Install the windrvr6.0/.ko driver module.

; Thefollowing command must be executed with root privileges.

make install

Theinstallation is performed using the setup_inst_dir script, which copies the driver module
to the target's loadable kernel modules directory, and uses the wdr eg script [13.3] to load the
driver module.

4. Change the user and group IDs and give read/write permissions to the devicefile
/dev/windrvr 6, depending on how you wish to allow users to access hardware
through the device. Due to security reasons, by default the devicefileis created
with permissions only for the root user. Change the permissions by modifying your
/etc/udev/per missions.d/50-udev.per missions file. For example, add the following line to
provide read and write permissions:
wi ndrvr6: root:root: 0666

Use the wdr eg script to dynamically load the WinDriver driver module on the target

- after each boot [13.3]. To automate this, copy wdr eg to the target machine, and add the
following line to the target's Linux boot file (for example, /etc/rc.local):

<path to wdreg> wi ndrvr6

© 2015 Jungo Connectivity Ltd. 141 CONFIDENTIAL

Chapter 14. Distributing Your Driver

14.4.3. Building and Installing Your Kernel Plugin
Driver on the Target

If you have created a Kernel Plugin driver [11], build and install this driver —
kp_xxx_module.o/.ko — on the target, by performing the following steps from the distribution
package subdirectory containing the configure.kp script and related build and installation files —
normally the redist subdirectory [14.4.2].

1. Generate the Kernel Plugln makefile — makefile.kp:
$./configure.kp

» The configuration script creates a makefile based on the running kernel. Y ou
may select to use another installed kernel source, by executing the script with the
--W t h- ker nel - sour ce=<pat h> option, where <pat h> isthe full path to
the kernel source directory — e.g., /usr/src/linux.

"
1

* If the Linux kernel version is 2.6.26 or higher, the configuration script generates
makefiles that use kbuild to compile the kernel modules. Y ou can force the use of
kbuild on earlier versions of Linux, by executing the configuration script with the
- - enabl e- kbui | d flag.

» For afull list of the configuration script options, use the - - hel p option:
./configure.kp --help

2. Build the Kernel Plugin driver module:
$ make -f makefile. kp

Thiswill create aL INUX.<kernel version>.<CPU>.KP directory, containing the newly
compiled driver module — kp_xxx_module.o/.ko.

3. Install the Kernel Plugin module.

The following command must be executed with root privileges.

make install -f makefile.kp

&) To automatically load your Kernel Plugin driver on each boot, add the following
- lineto thetarget's Linux boot file (for example, /etc/rc.local), after the WinDriver
driver module load command [13.3.1] (replace <path to kp_xxx_module.o/.ko>
with the path to your Kernel Plugln driver module, which is found in your
LINUX.<kernel version>.<CPU>.KP distribution directory):
/ sbin/insnmod <path to kp_xxx_nodul e. o/ . ko>

© 2015 Jungo Connectivity Ltd. 142 CONFIDENTIAL

Chapter 14. Distributing Your Driver

14.4.4. Installing the User-Mode Hardware-Control
Application or Shared Object

If your user-mode hardware-control application or shared object uses libwdapi1180.s0[14.4.1.2],
copy libwdapi1180.so from the distribution package to the target's library directory:

 Jusr/lib — when distributing a 32-hit application/shared object to a 32-bit or 64-bit target
 Jusr/lib64 — when distributing a 64-bit application/shared object to a 64-bit target

If you decided to distribute the source code of the application/shared object [14.4.1.2], copy the
source code to the target as well.

Remember that you may not distribute the source code of the libwdapi1180.so shared
object or your WinDriver license string as part of the source code distribution [14.4.1.2].

© 2015 Jungo Connectivity Ltd. 143 CONFIDENTIAL

Chapter 15
Driver Installation — Advanced

Issues

15.1. Windows INF Files

Deviceinformation (INF) files are text files that provide information used by the Windows
Plug-and-Play mechanism to install software that supports a given hardware device. INF files
are required for hardware that identifies itself, such as USB and PCI. An INF fileincludes al
necessary information about a device and the files to be installed. When hardware manufacturers
introduce new products, they must create INF files to explicitly define the resources and files
required for each class of device.

In some cases, the INF file for your specific device is supplied by the operating system. In

other cases, you will need to create an INF file for your device. WinDriver's DriverWizard can
generate a specific INF file for your device. The INF file is used to notify the operating system
that WinDriver now handles the selected device.

Y ou can use DriverWizard to generate the INF file on the development machine — as explained

in Section 4.2 of the manual — and then install the INF file on any machine to which you
distribute the driver, as explained in the following sections.

15.1.1. Why Should | Create an INF File?

* To bind the WinDriver kernel module to a specific PCI/PCMCIA device.
» Tooverridethe existing driver (if any).
» To enable WinDriver applications and DriverWizard to access a PCI/PCMCIA device.

» To enable WinDriver to obtain a Plug-and-Play representation of PCI/PCMCIA device
resources (/O ranges, memory ranges, and interrupts).

Handling of Message-Signaled Interrupts (MSI) or Extended M essage-Signaled
Interrupts (M SI-X) requires specific configuration of the INF file — see further detailsin
Section 9.2.7.1.

© 2015 Jungo Connectivity Ltd. 144 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

15.1.2. How Do I Install an INF File When No Driver
Exists?

Y ou must have administrative privilegesin order to install an INF file.

Y ou can use the wdreg utility with thei nst al I command to automatically install the INF file:
wdreg -inf <path to the INF file> install
(For more information, refer to Section 13.2.1 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 4.2).

It isalso possible to install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis plugged
inor, if the device was already connected, when scanning for hardware changes from the
Device Manager.

» Windows Add/Remove Hardwar e Wizard: Right-click the mouse on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

* Windows Upgrade Device Driver Wizard: Locate the devicein the Device Manager devices
list and select the Update Driver ... option from the right-click mouse menu or from the Device
Manager's Action menu.

In al the manual installation methods above you will need to point Windows to the location of the
relevant INF file during the installation.

We recommend using the wdr eg utility to install the INF file automatically, instead of installing it
manually.

If theinstallation fails with an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur rent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

15.1.3. How Do | Replace an Existing Driver Using
the INF File?

Y ou must have administrative privilegesin order to replace adriver.

1. Install your INFfile.

© 2015 Jungo Connectivity Ltd. 145 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

Y ou can use the wdreg utility with thei nst al | command to automatically install the INF
file

wdreg -inf <path to INF file> install

(For more information, refer to Section 13.2.1 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 4.2).

It isalso possibleto install the INF file manually, using either of the following methods:

» Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis
plugged in or, if the device was already connected, when scanning for hardware changes
from the Device Manager.

* Windows Add/Remove Hardware Wizard: Right-click on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

» Windows Upgrade Device Driver Wizard: Locate the device in the Device M anager
deviceslist and select the Update Driver ... option from the right-click mouse menu or
from the Device Manager's Action menu.

In the manual installation methods above you will need to point Windows to the location of
the relevant INF file during the installation. If the installation wizard offersto install an INF
file other than the one you have generated, select I nstall one of the other driversand choose
your specific INF file from the list.

We recommend using the wdr eg utility to install the INF file automatically, instead of
installing it manually.

If the installation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE

\ M cr osof t \ Wndows\ Curr ent Ver si on. Thisregistry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

15.2. Renaming the WinDriver Kernel Driver

The WinDriver APIs are implemented within the WinDriver kernel driver module
(windrvr6.sy<.dll/.ol.ko — depending on the OS), which provides the main driver functionality
and enables you to code your specific driver logic from the user mode [1.6].

On Windows and Linux you can change the name of the WinDriver kernel module to your
preferred driver name, and then distribute the renamed driver instead of default kernel module
— windrvr6.sys/.0/.ko. The following sections explain how to rename the driver for each of the
supported operating systems.

© 2015 Jungo Connectivity Ltd. 146 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

For information on how to use the Debug Monitor to log debug messages from your
renamed driver, refer to Section 6.2.1.1: Running wddebug_gui for a Renamed Driver.

A renamed WinDriver kernel driver can be installed on the same machine as the original
kernel module. You can also install multiple renamed WinDriver drivers on the same machine,
simultaneously.

©) Try to give your driver aunique name in order to avoid a potentia conflict with other
- driverson the target machine on which your driver will be installed.

15.2.1. Windows Driver Renaming

DriverWizard automates most of the work of renaming the Windows WinDriver kernel driver —
windrvr6.sys.

* When renaming the driver, the CPU architecture (32-/64-bit) of the devel opment
platform and its WinDriver installation, should match the target platform.

* Renaming the signed windrvr 6.sys driver nullifiesits signature. In such cases you
can select either to sign your new driver, or to distribute an unsigned driver. For more
information on driver signing and certification, refer to Section 15.3. For guidelines for
signing and certifying your renamed driver, refer to Section 15.3.2.

@ References to xxx in this section should be replaced with the name of your generated
Y Driverwizard driver project.

To rename your Windows WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Windows (refer
to Section 4.2, Step 6), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory:

« XXX.SyS— Your new driver, which is actually arenamed copy of the windrvr6.sys
driver. Note: The properties of the generated driver file (such asthe file's version,
company name, etc.) are identical to the properties of the origina windrvr6.sys driver.
Y ou can rebuild the driver with new properties using the files from the generated
xxx_installation sys directory, as explained below.

« xxx_driver.inf — A modified version of the windrvr6.inf file, which will be used to
install your new xxx.sys driver.
Y ou can make additional modificationsto thisfile, if you wish — namely, changing the
string definitions and/or comments in thefile.

© 2015 Jungo Connectivity Ltd. 147 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

« xxx_device.inf — A modified version of the standard generated DriverWizard INF file
for your device, which registers your device with your driver (Xxx.sys).
Y ou can make additional modificationsto thisfile, if you wish, such as changing the
manufacturer or driver provider strings.

« wdapil180.dll — A copy of the WinDriver-API DLL. The DLL iscopied herein
order to simplify the driver distribution, allowing you to use the generated xxx\r edist
directory as the main installation directory for your driver, instead of the original
WinDriver\redist directory.

« wdreg.exe, wdreg_gui.exe, and difxapi.dll — Copies of the CUI and GUI versions of
the wdreg WinDriver driver installation utility, and the Driver Install Frameworks API
(DIFXAPI) DLL required by this utility [13.2.1], (respectively). These files are copied
from the WinDriver\util directory, to smplify the installation of the renamed driver.

« xxx_install.bat — Aninstallation script that executes the wdr eg commands for
installing the xxx_driver.inf and xxx_device.inf files. This script is designed to
simplify the installation of the renamed xxx_driver.sys driver, and the registration of
your device with thisdriver.

» gysdirectory: Thisdirectory contains files for advanced users, who wish to change the
properties of their driver file. Note: Changing the file's properties requires rebuilding of the
driver module using the Windows Driver Kit (WDK).

To modify the properties of your xxx.sys driver file:

1. Verify that the WDK isinstalled on your development PC, or elsewhere on its
network, and set the BASEDIR environment variable to point to the WDK installation
directory.

2. Modify the xxx.rc resources file in the generated sys directory in order to set different
driver file properties.

3. Rebuild the driver by running the following command:
ddk_rmake <0OS> <build node (free/checked)>
For example, to build arelease version of the driver for Windows XP:
ddk_make wi nxp free

* Theddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the build
command. Run ddk_nake. bat with no parametersto view the available
options for this utility.

» The selected build OS must match the CPU architecture of your WinDriver
installation. For example, you cannot select the 64-bit wi n7_x64 OSflag
when using a 32-bit WinDriver installation.

After rebuilding the xxx.sys driver, copy the new driver file to the generated
xxx_installation\redist directory.

© 2015 Jungo Connectivity Ltd. 148 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needtodois
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the WD_DRI VER_NANE_CHANGE
preprocessor flag (e.g., - DAD_DRI VER_NAME_CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructionsin Section 14.2 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution. Note that you can use the generated xxx_install.bat
installation script (see Step 1) to simplify the installation.

15.2.2. Linux Driver Renaming

DriverWizard automates most of the work of renaming the Linux WinDriver kernel driver —
windrvr 6.0/ ko.

, References to xxx in this section should be replaced with the name of your generated
@ Driverwizard driver project.

To rename your Linux WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Linux (refer to
Section 4.2, Step 6), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

* redist directory: This directory contains copies of the files from the origina
WinDriver/redist installation directory, but with the required modifications for building
your xxx.0/.ko driver instead of windrvr6.0/.ko.

* lib and include directories: Copies of the library and include directories from the original
WinDriver distribution. These copies are created since the supported Linux WinDriver
kernel driver build method relies on the existence of these directories directly under the
same parent directory asthe redist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needtodo is
replace the driver name that is passed to the function in the code with your new driver name.

© 2015 Jungo Connectivity Ltd. 149 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

3. Verify that your user-mode driver project is built with the WD DRI VER _NAME_CHANGE
preprocessor flag (- DAD_DRI VER_NAME CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default. If you have created a Kernel Plugln driver [11], you
will need to add this flag by uncommenting the following linein the Kernel Plugin driver's
configuration script:
ADDI TI ONAL_FLAGS="- DWD_ DRI VER NAME_CHANGE"

4. Install your new driver by following the instructions in Section 14.4 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

As part of the installation, build your new kernel driver module(s) by following the
instructions in Section 14.4, using the files from your new installation directory.

15.3. Windows Digital Driver Signing and
Certification

15.3.1. Overview

Before distributing your driver, you may digitally sign it using Microsoft's Authenticode
mechanism, and/or certify it by submitting it to Microsoft's Windows Certification Program.
Some Windows operating systems, such as Windows XP, do not require installed drivers to be
digitally signed or certified. There are, however, advantages to getting your driver digitally signed
or fully certified, including the following:

 Driver installation on systems where installing unsigned drivers has been blocked

» Avoiding warnings during driver installation

* Full pre-installation of INF files [15.1] on Windows XP and higher

64-bit versions of Windows Vista and higher require Kernel-Mode Code Signing (KMCS) of
software that loads in kernel mode. This has the following implications for WinDriver-based

drivers:

» Driversthat areinstalled viaan INF file must be distributed together with a signed catalog file
(see detailsin Section 15.3.2).

» Driversthat are not installed using an INF file — namely, Kernel Plugin drivers — must
contain an embedded driver signature.

During driver development, you can configure Windows to temporarily alow the
installation of unsigned drivers.

© 2015 Jungo Connectivity Ltd. 150 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

For more information about digital driver signing and certification, refer to the following
documentation in the Microsoft Development Network (MSDN) library:

» Driver Sgning Requirements for Windows
¢ Introduction to Code Sgning
 Digital Sgnaturesfor Kernel Modules on Windows

This white paper contains information about kernel-mode code signing, test signing, and
disabling signature enforcement during devel opment.

Some of the documentation may still use old terminology. For example, references to
the Windows Logo Program (WLP) or to the Windows Hardware Quality Labs (WHQL)
should be replaced with the Windows Certification Program, and references to the
Windows Quality Online Services (Winqual) should be replaced with the Windows Dev
Center Hardware Dashboard Services (the Hardware Dashboard).

15.3.1.1. Authenticode Driver Signhature

The Microsoft Authenticode mechanism verifies the authenticity of adriver's provider. It alows
driver developers to include information about themselves and their code with their programs
through the use of digital signatures, and informs users of the driver that the driver's publisher is
participating in an infrastructure of trusted entities.

The Authenticode signature does not, however, guarantee the code's safety or functionality.

The WinDriver\redist\windrvr 6.sys driver has an Authenticode digital signature.

15.3.1.2. Windows Certification Program

Microsoft's Windows Certification Program (previously known as the Windows Logo Program
(WLP)), lays out procedures for submitting hardware and software modules, including drivers, for
Microsoft quality assurance tests. Passing the tests qualifies the hardware/software for Microsoft
certification, which verifies both the driver provider's authenticity and the driver's safety and
functionality.

To digitally sign and certify a device driver, a Windows Hardware Certification Kit (HCK)
package, which includes the driver and the related hardware, should be submitted to the Windows
Certification Program for testing, using the Windows Dev Center Hardware Dashboard Services
(the Har dwar e Dashboar d).

; Jungo's professional services unit provides a complete Windows driver pre-certification
U service for Jungo-based drivers. Professional engineers efficiently perform all the tests
required by the Windows Certification Program, relieving customers of the expense and
stress of in-house testing. Jungo prepares an HCK submission package containing the test
results, and delivers the package to the customer, ready for submission to Microsoft.
For more information, refer to
http://www.jungo.com/st/products/windriver/windriver_whql_certification/.

© 2015 Jungo Connectivity Ltd. 151 CONFIDENTIAL

http://www.jungo.com/st/products/windriver/windriver_whql_certification/

Chapter 15. Driver Installation — Advanced Issues

For detailed information regarding Microsoft's Windows Certification Program and the
certification process, refer to the MSDN Windows Hardwar e Certification page — http://
msdn. microsoft.com/library/windows/hardware/gg463010.aspx — and to the documentation
referenced from that page, including the MSDN Windows Dev Center — Hardware Dashboard
Services page — http://msdn.microsoft.com/library/windows/hardware/gg463091.

15.3.2. Driver Signing and Certification of
WinDriver-Based Drivers

Asindicated above [15.3.1.1], The WinDriver\redist\windrvr 6.sys driver has an Authenticode
signature. Since WinDriver's kernel module (windrvr6.sys) is ageneric driver, which can be used
asadriver for different types of hardware devices, it cannot be submitted to Microsoft's Windows
Certification Program as a standalone driver. However, once you have used WinDriver to develop
aWindows driver for your selected hardware, you can submit both the hardware and driver for
Microsoft certification, as explained below.

The driver certification and signature procedures — either via Authenticode or the Windows
Certification Program — require the creation of a catalog file for the driver. Thisfileisasort of
hash, which describes other files. The signed windrvr 6.sys driver is provided with a matching
catalog file— WinDriver\redist\wd1180.cat. Thisfileis assigned to the Cat al ogFi | e entry
in the windrvr6.inf file (provided as well in the redist directory). Thisentry isused to inform
Windows of the driver's signature and the relevant catal og file during the driver's installation.

When the name, contents, or even the date of the files described in adriver's catalog fileis
modified, the catalog file, and consequently the driver signature associated with it, become
invalid. Therefore, if you select to rename the windrvr 6.sys driver [15.2] and/or the related
windrvr6.inf file, the wd1180.cat catalog file and the related driver signature will become
invalid.

In addition, when using WinDriver to develop adriver for your Plug-and-Play device, you
normally also create a device-specific INF file that registers your device to work with the
windrvr6.sys driver module (or arenamed version of thisdriver). Since this INF file is created
at your site, for your specific hardware, it is not referenced from the wd1180.cat catalog file and
cannot be signed by Jungo a priori.

When renaming windrvr 6.sys and/or creating a device-specific INF file for your device, you
have two alternative options regarding your driver's digital signing:

» Do not digitally sign your driver. If you select this option, remove or comment-out the
reference to the wd1180.cat file from the windrvr6.inf file (or your renamed version of this
file).

* Submit your driver to the Windows Certification Program, or have it Authenticode signed.
Note that while renaming WinDriver\redist\windrvr 6.sys nullifies the driver's digita
signature, the driver is still compliant with the certification requirements of the Windows
Certification Program.

© 2015 Jungo Connectivity Ltd. 152 CONFIDENTIAL

http://msdn.microsoft.com/library/windows/hardware/gg463010.aspx
http://msdn.microsoft.com/library/windows/hardware/gg463010.aspx
http://msdn.microsoft.com/library/windows/hardware/gg463091

Chapter 15. Driver Installation — Advanced Issues

To digitally sign/certify your driver, follow these steps:

« Create anew catalog file for your driver, as explained in the Windows Certification Program
documentation. The new file should reference both windrvr 6.sys (or your renamed driver)
and any INF files used in your driver's installation.

« Assign the name of your new catalog file to the Cat al ogFi | e entry in your driver's
INF file(s). (You can either change the Cat al ogFi | e entry inthewindrvr6.inf fileto
refer to your new catalog file, and add a similar entry in your device-specific INF file; or
incorporate both windrvr 6.inf and your device INF file into asingle INF file that contains
such aCat al ogFi | e entry).

= Submit your driver to Microsoft's Windows Certification Program or for an Authenticode
signature. If you wish to submit your driver to the Windows Certification Program, refer to
the additional guidelinesin Section 15.3.2.1.

Note that many WinDriver customers have already successfully digitally signed and certified
their WinDriver-based drivers.

15.3.2.1. HCK Test Notes

Asindicated in Microsoft's documentation, before submitting the driver for testing and
certification you need to download the Windows Hardware Certification Kit (HCK), and run
the relevant tests for your hardware/software. After you have verified that you can successfully
pass the HCK tests, create the required logs package and proceed according to Microsoft's
documentation. For more information, refer to the MSDN Windows Hardware Certification Kit
(HCK) page — http://msdn.microsoft.com/library/windows/hardware/hh833788.

When running the HCK tests, note the following:

» TheDriver Verifier test is applied to all unsigned drivers found on the test machine. It is
therefore important to try and minimize the number of unsigned driversinstalled on the test
machine (apart from the test driver — windrvr 6.sys).

» The ACPI Stresstest requires that the ACPI settings in the BIOS support the S3 power state.

» Before submitting the file for certification you need to create a new catalog file, which lists

your driver and specific INF file(s), and refer to this catalog file from your INF file(s), as
explained above [15.3.2].

© 2015 Jungo Connectivity Ltd. 153 CONFIDENTIAL

http://msdn.microsoft.com/library/windows/hardware/hh833788

Chapter 15. Driver Installation — Advanced Issues

15.4. Windows XP Embedded WinDriver
Component

When creating a Windows X P Embedded image using the Target Designer tool from Microsoft's
Windows Embedded Studio, you can select the components that you wish to add to your image.
The added components will be installed automatically during the first boot on the Windows XP
Embedded target on which theimage is |oaded.

To automatically install the required WinDriver files— such as the windrvr 6.inf file and the
WinDriver kernel driver that it installs (windrvr 6.sys), your device INF file (for a Plug-and-Play
device— PCI/PCMCIA), and the WinDriver-API DLL (wdapi1180.dll) — on Windows

XP Embedded platforms, you can create a relevant WinDriver component and add it to your
Windows XP Embedded image.

WinDriver ssimplifies this task for you by providing you with a ready-made component:
WinDriver\redist\xp_embedded\wd_component\windriver.sld.

To use the provided component, follow the steps below.

The provided windriver.sld component relies on the existence of awd_files directory
in the same directory that holds the component. Therefore, do not rename the provided
WinDriver\redist\xp_embedded\wd_component\wd_files directory or modify its
contents, unless instructed to so in the following guidelines.

1. For a Plug-and-Play device (PCI/PCMCIA) — modify the dev.inf file:
The windriver.sd component depends on the existence of adev.inf filein thewd_files
directory. The WinDriver installation on your development Windows platform contains a
generic WinDriver\redist\xp_embedded\wd_component\wd_files\dev.inf file. Use either
of the following methods to modify this file to suit your device:

» Modify the generic dev.inf file to describe your device. At the very least, you must modify
thetemplate [Devi ceLi st] entry and insert your device's hardware type and vendor
and product IDs. For example, for a PCl device with vendor 1D 0x1111 and product 1D
0x2222:

"my_dev_pci"=Install, PCI\VEN 1111\ &DEV 2222

OR:

» Create an INF file for your device using DriverWizard (refer to Section 4.2, Step 3) and
name it dev.inf, or use an INF for one of WinDriver's enhanced-support chipsets[7] that
suits your card and rename it to dev.inf. Then copy your dev.inf device INF file to the
WinDriver\redist\xp_embedded\wd_component\wd_files directory.

* For anon-Plug-and-Play (I SA) device— remove the dev.inf installation from the
WinDriver component: Remove or comment-out the following line in the installation
file WinDriver\redist\xp_embedded\wd_component\wd_files\wd_install.bat (to
comment-out the line, add two colons — :: — at the beginning of theline): wdr eg - i nf
dev.inf install

© 2015 Jungo Connectivity Ltd. 154 CONFIDENTIAL

Chapter 15. Driver Installation — Advanced Issues

2. Add the WinDriver component to the Windows Embedded Component Database:

1. Open the Windows Embedded Component Database Manager (DBMgr).

2. Click Import.

3. Select the WinDriver component —
WinDriver\redist\xp_embedded\wd_component\windriver.dd — asthe SLD file and
click Import.

3. Add the WinDriver component to your Windows XP Embedded image:

1. Open your project in the Target Designer.

2. Double-click the WinDriver component to add it to your project.

Note: If you aready have an earlier version of the WinDriver component in your
project's components list, right-click this component and select Upgrade.

3. Run adependency check and build your image.

After following these steps, WinDriver will automatically be installed during the first boot on the
target Windows X P Embedded platform on which your image is loaded.

If you have selected to rename the WinDriver kernel module [15.2], you will not be able
to use the provided windriver.sld component. Y ou can build your own component for the
renamed driver, or use the wdreg utility to install the driver on the target Windows XP
Embedded platform, as explained in the manual.

© 2015 Jungo Connectivity Ltd. 155 CONFIDENTIAL

Appendix A
64-Bit Operating Systems
Support

A.l. Supported 64-Bit Architectures

WinDriver supports the following 64-hbit platforms:

* Linux AMD®64 or Intel EM64T (x86_64) or 64-bit PowerPC (ppc64).
For afull list of the Linux platforms supported by WinDriver, refer to Section 3.1.3.

* Windows AMD®64 or Intel EM64T (x64).
For afull list of the Windows platforms supported by WinDriver, refer to Section 3.1.1.

The project or makefile for a 64-bit driver project must include the KERNEL_64BI T
preprocessor definition. In the makefiles, the definition is added using the - D flag:

- DKERNEL_64BI T.

The sample and wizard-generated Linux and Windows GCC makefiles and the Windows
MS Visua Studio projects, in the 64-bit WinDriver toolkit, already include this definition.

For information regarding performing 64-bit data transfers with WinDriver, including on 32-bit
platforms, refer to Section 10.2.3.

A.2. Support for 32-Bit Applications on 64-Bit
Windows and Linux Platforms

By default, applications created using the 64-bit versions of WinDriver are 64-bit applications.
Such applications are more efficient than 32-bit applications. However, you can also use the
64-bit WinDriver versions to create 32-bit applications that will run on the supported Windows
and Linux 64-bit platforms[A.1].

In the following documentation, <WD64> signifies the path to a 64-bit WinDriver
installation directory for your target operating system, and <WD32> signifies the path to a
32-bit WinDriver installation directory for the same operating system.

To create a 32-bit application for 64-bit Windows or Linux platforms, using the 64-bit version of
WinDriver, do the following:

1. Create aWinDriver application, as outlined in this manual (e.g., by generating code with
DriverWizard, or using one of the WinDriver samples).

© 2015 Jungo Connectivity Ltd. 156 CONFIDENTIAL

Appendix A. 64-Bit Operating Systems Support

2. Build the application with an appropriate 32-bit compiler for your target OS, using the
following configuration:

* Add aKERNEL_64BI T preprocessor definition to your project or makefile.

In the makefiles, the definition is added using the - Dflag: - DKERNEL _64BlI T.

The sample and wizard-generated Linux and Windows GCC makefiles and the Windows
MS Visua Studio projects, in the 64-bit WinDriver toolkit, already include this definition.

* Link the application with the specific version of the WinDriver-API library/
shared object for 32-bit applications executed on 64-hit platforms —
<WD64>\lib\amd64\x86\wdapi1180.lib on Windows/ <WD64>/lib/libwdapi1180 32.so
on Linux.

The sample and wizard-generated project and make files for 32-bit applicationsin the
64-bit WinDriver toolkit already link to the correct library:

On Windows, the MS Visua Studio project files and Windows GCC makefiles are defined
to link with <WD64>\lib\amd64\x86\wdapi1180.lib.

On Linux, the installation of the 64-bit WinDriver toolkit on the development machine
creates alibwdapi1180.s0 symbolic link in the /usr/lib directory — which linksto
<WD64>/lib/libwdapi1180_32.so — and in the /usr/lib64 directory — which linksto
<WD64>/lib/libwdapi1180.s0 (the 64-bit version of this shared object).

The sample and wizard-generated WinDriver makefiles rely on these symbolic links to
link with the appropriate shared object, depending on whether the code is compiled using a
32-bit or 64-bit compiler.

* When distributing your application to target 64-bit platforms, you need to provide
with it the WinDriver-API DLL/shared object for 32-bit applications executed
on 64-bit platforms — <WD64>\r edist\wdapi1180_32.dIl on Windows/
<WD64>/lib/libwdapi1180_32.so on Linux. Before distributing thisfile, rename
the copy of thefilein your distribution package by removing the 32 portion. The
installation on the target should copy the renamed DL L/shared object to the relevant
OS directory — \% windir % \sysW OW64 on Windows or /usr/lib on Linux. All other
distribution files are the same as for any other 64-bit WinDriver driver distribution, as
detailed in Chapter 14.

» An application created using the method described in this section will not work on 32-bit
platforms. A WinDriver application for 32-bit platforms needs to be compiled without
the KERNEL _64BI T definition; it needs to be linked with the standard 32-bit version
of the WinDriver-API library/shared object from the 32-bit WinDriver installation
(<WD32>\lib\x86\wdapi1180.lib on Windows / <WD32>/lib/libwdapi1180.50 on
Linux); and it should be distributed with the standard 32-bit WinDriver-API DLL/shared
object (KWD32>\r edist\wdapi1180.dIl on Windows/ <WD32>/lib/libwdapi1180.s0 on
Linux) and any other required 32-bit distribution file, as outlined in Chapter 14.

© 2015 Jungo Connectivity Ltd. 157 CONFIDENTIAL

Appendix A. 64-Bit Operating Systems Support

A.3. 64-Bit and 32-Bit Data Types

In general, DWORD is unsigned long. While any 32-bit compiler treats this type as 32 bits wide,
64-bit compilerstreat this type differently. With Windows 64-bit compilers the size of thistype
isstill 32 bits. However, with UNIX 64-bit compilers (e.g., GCC, SUN Forte) the size of this
typeis 64 bits. In order to avoid compiler dependency issues, use the UINT32 and UINT64 cross-
platform types when you want to refer to a 32-bit or 64-bit address, respectively.

© 2015 Jungo Connectivity Ltd. 158 CONFIDENTIAL

Appendix B
APl Reference

This function referenceis C oriented. The WinDriver C# APIs have been implemented as
closely as possible to the C APIs, therefore .NET programmers can also use this reference
to better understand the WinDriver APIs for their selected development language. For the
exact API implementation and usage examples for your selected language, refer to the
WinDriver .NET source code.

B.1. WD _DriverName

Purpose

Sets the name of the WinDriver kernel module, which will be used by the calling application.

The default driver name, which is used if the function is not called, is windrvr 6.

This function must be called once, and only once, from the beginning of your application,
before calling any other WinDriver function (including WD_QOpen() / WDC_Dr i ver Open() /
WDC_xxxDevi ceQpen()), as demonstrated in the sample and generated DriverWizard
WinDriver applications, which include acall to this function with the default driver name —
windrvr6.

On Windows and Linux, if you select to modify the name of the WinDriver kernel module
(windrvr6.sys.0/.ko), as explained in Section 15.2, you must ensure that your application calls
VD Dr i ver Name() with your new driver name.

In order to usethe WD_Dr i ver Nane() function, your user-mode driver project must be built
with WD_DRI VER_NAME_CHANCE preprocessor flag (e.g.: - DWD_DRI VER_NAME_CHANGE
— for MSVisual Studio, Windows GCC, and GCC).

The sample and generated DriverWizard Windows and Linux WinDriver projects/makefiles
already set this preprocessor flag.

Prototype

const char* DLLCALLCONV WD Driver Nanme(const char* sNane);

Parameters
Name Type I nput/Output
sName const char* Input

© 2015 Jungo Connectivity Ltd. 159 CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
sName The name of the WinDriver kernel module to be used by the

application.

NOTE: The driver name should be indicated without the driver
file's extension. For example, use windrvr 6, not windrvr 6.sys or
windrvr6.0.

Return Value

Returns the selected driver name on success; returns NULL on failure (e.g., if the functionis
called twice from the same application)long.

Remarks

The ability to rename the WinDriver kernel module is supported on Windows and Linux, as
explained in Section 15.2.

On Windows CE, always call theWD_Dr i ver Nanme() function with the default WinDriver
kernel module name — windrvr6 — or refrain from calling the function altogether.

B.2. WDC Library Overview

The "WinDriver Card" — WDC — API provides convenient user-mode wrappers to the basic
WinDriver PCI/ISA/PCMCIA/CardBus WD_xxx API, which is described in the WinDriver PCI
Low-Level API Reference.

The WDC wrappers are designed to simplify the usage of WinDriver for communicating

with PCI/ISA/PCMCIA/CardBus devices. While you can still use the basic WD_xxx
PCI/PCMCIA/ISA WinDriver API from your code, we recommend that you refrain from doing so
and use the high-level WDC API instead.

NOTE: Most of the WDC API can be used both from the user mode and from the kernel mode
(from aKernel Plugin driver [11]).

The generated DriverWizard PCI/PCMCIA/ISA diagnostics driver code, as well asthe PLX
sample code, and the pci_diag, Kernel Plugln pci_diag, pcmcia_diag and pci_dump samples,
for example, utilize the WDC API.

The WDC API is part of wdapi1180 DL L/shared object:

WinDriver\redist\WINCE\<TARGET _CPU>\wdapi1180.dIl (Windows CE) / WinDriver/lib/
libwdapil1180.s0 (Linux).

The source code for the WDC API isfound in the WinDriver/src/wdapi directory.

The WDC interface is provided in the wdc_lib.h and wdc_defs.h header files (both found under
the WinDriver/includes directory).

© 2015 Jungo Connectivity Ltd. 160 CONFIDENTIAL

Appendix B. API Reference

» [wdc_lib.h] declaresthe "high-level" WDC API (type definitions, function declarations, etc.).

* [wdc_defs.h] declaresthe "low-level” WDC API. Thisfileincludes definitions and type
information that is encapsulated by the high-level wdc _lib.h file.

The WinDriver PCI/PCMCIA/ISA samples and generated DriverWizard code that utilize

the WDC AP, for example, consist of a"library” for the specific device, and a diagnostics
application that usesit. The high-level diagnostics code only utilizes the wdc_lib.h API, while the
library code also uses the low-level API from the wdc_defs.h file, thus maintaining the desired
level of encapsulation.

The following sections describe the WDC high-level [B.3] and low-level [B.4] API.

* PCMCIA is supported only on Windows.

» CardBus devices are handled via WinDriver's PCl API; therefore PCI referencesin this
section apply also to CardBus, on the operating systems on which it is supported [1.1].

B.3. WDC High-Level API

This section describes the WDC API defined in the WinDriver/include/wdc _lib.h header file.
B.3.1. Structures, Types and General Definitions

B.3.1.1. WDC_DEVICE_HANDLE

Handle to a WDC device information structure [B.4.3].

typedef void * WDC_DEVI CE_HANDLE;

B.3.1.2. WDC_DRV_OPEN_OPTIONS Definitions

t ypedef DWORD WDC _DRV_OPEN_OPTI ONS;

Preprocessor definitions of flags that describe tasks to be performed when opening a handle to the
WDC library (see WDC_Dr i ver Open() [B.3.2]).

Name Description

WDC_DRV_OPEN_CHECK_VER | Compare the version of the WinDriver source files used

by the code with the version of the loaded WinDriver
kernel

WDC _DRV_OPEN_REG LIC Register aWinDriver license registration string

© 2015 Jungo Connectivity Ltd. 161 CONFIDENTIAL

Appendix B. API Reference

The following preprocessor definitions provide convenient WDC driver open options, which can
be passed to WDC_Dr i ver Open() [B.3.2]:

Name

Description

WDC_DRV_OPEN_BASIC

Instructs WDC_Dr i ver Open() [B.3.2] to perform only
the basic WDC open tasks, mainly open a handle to
WinDriver's kernel module.

NOTE: The value of this option is zero (<=> no driver
open flags), therefore this option cannot be combined
with any of the other WDC driver open options.

WDC_DRV_OPEN_KP

Convenience option when calling

WDC Dri ver Open() [B.3.2] from the Kernel
Plugln. This option is equivalent to setting the

WDC DRV_OPEN BASI Cflag, whichisthe
recommended option to set when opening a handle to
the WDC library from the Kernel Plugin.

WDC_DRV_OPEN_ALL

A convenience mask of all the basic WDC driver
open flags— WDC_DRV_OPEN_CHECK VER

and WOC_DRV_OPEN_REG REG LI C. (The

basic functionality of opening a handle to
WinDriver's kernel module is always performed by
WDC Dri ver Qpen() [B.3.2], so thereis no need to
also set the WDC_DRV_OPEN_BASI Cflag).

WDC_DRV_OPEN_DEFAULT

Use the default WDC open options:

* For user-mode applications. equivalent to setting
WDC_DRV_OPEN_ALL ;

 For aKerne Plugln: equivalent to setting
WDC_DRV_OPEN_KP

B.3.1.3. WDC DIRECTION Enumeration

Enumeration of adevice's address/register access directions.

Enum Value Description
WDC_READ Read from the address
WDC WRITE Write to the address

WDC_READ WRITE

Read from the address or write to it.
Thisvalueisused, for example, in the WinDriver
samples and generated DriverWizard diagnostics code
in order to describe aregister's access mode, indicating
that the register can either be read from or written to.

© 2015 Jungo Connectivity Ltd.

162 CONFIDENTIAL

Appendix B. API Reference

B.3.1.4. WDC_ADDR_MODE Enumeration

Enumeration of memory or |/O addresses/registers read/write modes.
The enumeration values are used to determine whether amemory or 1/O address/register is read/
written in multiples of 8, 16, 32 or 64 bits (i.e., 1, 2, 4 or 8 bytes).

Enum Value

Description

WDC_MODE 8

8 hits (1 byte) mode

WDC_MODE_16

16 bits (2 bytes) mode

WDC_MODE_32

32 bits (4 bytes) mode

WDC_MODE_64

64 bits (8 bytes) mode

B.3.1.5. WDC_ADDR_RW_OPTIONS Enumeration

Enumeration of flags that are used to determine how a memory or 1/O address will be read/

written.

Enum Value

Description

WDC_ADDR_RW_DEFAULT

Use the default read/write options: memory addresses
are accessed directly from the calling process; block
transfers are performed from subsequent addresses
(automatic increment).

NOTE: The value of thisflag is zero (<=> no read/write
flags), therefore it can not be combined in a bit-mask
with any of the other read/write options flags.

This option is used by the
WDC_ReadAddr 8/ 16/ 32/ 64() [B.3.23] and
WDC Wi teAddr 8/ 16/ 32/ 64() [B.3.24] functions.

WDC_ADDR_RW_NO AUTOINC

Do no automatically increment the read/write address
in block transfers, i.e., hold the device address constant
while reading/writing a block of memory or 1/0
addresses (relevant only for block (string) transfers).

© 2015 Jungo Connectivity Ltd.

163 CONFIDENTIAL

Appendix B. API Reference

B.3.1.6. WDC_ADDR_SIZE Definitions

t ypedef DWORD WDC_ADDR S| ZE;

Preprocessor definitions that depict memory or 1/O address/register sizes.

Name Description
WDC SIZE 8 8 bits (1 byte)
WDC_SIZE 16 16 bits (2 bytes)
WDC_SIZE 32 32 bits (4 bytes)
WDC_SIZE 64 64 bits (8 bytes)

B.3.1.7. WDC_SLEEP_OPTIONS Definitions

t ypedef DWORD WDC _SLEEP_OPTI ONS;

Preprocessor definitions that depict the sleep options that can be passed to
WDC_Sl eep() [B.3.60].

Name Description
WDC_SLEEP BUSY Delay execution by consuming CPU cycles (busy sleep)
WDC_SLEEP NON_BUSY Delay execution without consuming CPU cycles

(non-busy sleep).
Note: The accuracy of non-busy sleep is
machine-dependent and cannot be guaranteed for short

dleep intervals (< 1 millisecond).

B.3.1.8. WDC_DBG_OPTIONS Definitions

t ypedef DWORD WDC_DBG_OPTI ONS;

Preprocessor definitions that depict the possible debug options for the WDC library, which are
passed to WDC_Set DebugOpt i ons() [B.3.54].

The following flags determine the output file for the WDC library's debug messages:

Name Description

WDC _DBG _OUT _DBM Send debug messages from the WDC library to the
Debug Monitor [6.2]

WDC _DBG _OUT _FILE Send debug messages from the WDC library to a debug

file. By default, the debug file will be stderr, unless a
different fileis set inthe sDbgFi | e parameter of the
WDC_Set DebugOpt i ons() function [B.3.54].

This option is only supported from the user mode (as
opposed to the Kernel Plugin).

© 2015 Jungo Connectivity Ltd. 164 CONFIDENTIAL

Appendix B. API Reference

The following flags determine the debug level — i.e., what type of WDC debug messages to

display, if at all:

Name

Description

WDC_DBG_LEVEL_ERR

Display only WDC error debug messages

WDC_DBG_LEVEL_TRACE

Display both error and trace WDC debug messages

WDC_DBG_NONE

Do not display WDC debug messages

The following preprocessor definitions provide convenient debug flags combinations, which can
be passed to WDC_Set DebugOpt i ons() [B.3.54]:

* User-mode and Kernel Plugln convenience debug options:

Name

Description

WDC_DBG_DEFAULT

WDC_DBG OUT_DBM | WDC _DBG _LEVEL_TRACE:
Use the default debug options — send WDC error and
trace messages to the Debug Monitor [6.2].

WDC_DBG_DBM_ERR

WDC_DBG OUT_DBM | WDC _DBG _LEVEL_ERR:
Send WDC error debug messages to the Debug
Monitor [6.2].

WDC_DBG_DBM_TRACE

WDC _DBG OUT_DBM | WDC_DBG _LEVEL_TRACE:
Send WDC error and trace debug messages to the
Debug Monitor [6.2].

WDC_DBG_FULL

Full WDC debugging:

* From the user mode:

WDC_DBG OQUT_DBM | WDC _DBG _QUT_FI LE |
WDC_DBG_LEVEL_TRACE:

Send WDC error and trace debug messages both to the
Debug Monitor [6.2] and to a debug output file (default
file: stderr)

* From the Kernel Plugin:

WDC _DBG OUT_DBM | WDC DBG_LEVEL_TRACE:
Send WDC error and trace messages to the Debug
Monitor [6.2]

© 2015 Jungo Connectivity Ltd.

165 CONFIDENTIAL

Appendix B. API Reference

 User-mode only convenience debug options:

Name

Description

WDC_DBG_FILE_ERR

WDC DBG OUT _FI LE | WDC _DBG LEVEL_ERR:
Send WDC error debug messages to a debug file
(default file: stderr)

WDC_DBG_FILE TRACE

WDC _DBG OUT FI LE |

WDC _DBG_LEVEL_TRACE:

Send WDC error and trace debug messages to a debug
file (default file: stderr)

WDC_DBG_DBM_FILE ERR

WDC DBG _OUT_DBM |
WDC DBG LEVEL ERR:
Send WDC error debug messages both to the Debug
Monitor [6.2] and to adebug file (default file: stderr)

WDC DBG OUT FI LE |

WDC_DBG_DBM_FILE TRACE

WDC DBG OUT_DBM | WDC _DBG QOUT_FI LE |
WDC DBG LEVEL TRACE:

Send WDC error and trace debug messages both to the
Debug Monitor [6.2] and to adebug file (default file:
stderr)

B.3.1.9. WDC_SLOT_U Union

WDC PCI/PCMCIA device location information union.

Field Type Description

pciSlot WD _PCI_SLOT PCI device location information
structure [B.5.8]

pcmciaSlot WD_PCMCIA_SLOT PCMCIA device location
information structure [B.5.9]

B.3.1.10. WDC_PCI_SCAN_RESULT Structure

Structure for holding the results of a PCI bus scan (see WDC_Pci ScanDevi ces() [B.3.4]).

Field Type

Description

dwNumbDevices DWORD

Number of devices found on the
PCI bus that match the search
criteria (vendor & device IDs)

deviceld WD_PCI_ID[WD_PCI_CARDS] Array of matching vendor and
device IDs found on the PCI
bus[B.5.6]

deviceSlot WD_PCI_SLOT[WD_PCI_CARDS] | Array of PCI device location

information structures [B.5.8] for
the detected devices matching the
search criteria

© 2015 Jungo Connectivity Ltd.

166 CONFIDENTIAL

Appendix B. API Reference

B.3.1.11. WDC_PCMCIA_SCAN_RESULT Structure

Structure for holding the results of a PCMCIA bus scan (see
WDC _Pcnti aScanDevi ces() [B.3.7]).

Field Type Description
dwNumDevices | DWORD Number of devices
found on the PCMCIA

bus that match

the search criteria
(manufacturer & device
IDs)

deviceld WD_PCMCIA_ID[WD_PCMCIA_CARDS] Array of matching
vendor and device IDs
found on the PCMCIA
bus[B.5.7]

deviceSlot WD_PCMCIA_SLOT[WD_PCMCIA_CARDS] | Array of PCMCIA
device location
information
structures [B.5.9] for
the detected devices
matching the search
criteria

B.3.1.12. WDC_PCI_SCAN_CAPS_RESULT Structure

Structure for holding the results of a PCI capabilities scan (see WDC_Pci ScanCaps() [B.3.9]
and WDC_Pci ScanExt Caps() [B.3.9]).

Field Type Description

dwNumCaps | DWORD Number of capabilities found that
match the search criteria (capability
ID and capabilities group —

basic [B.3.8] or extended [B.3.9])

pciCaps WD_PCI_CAP[WD_PCI_MAX_CAPS] | Array of matching PCI
capabilities[B.5.10]

© 2015 Jungo Connectivity Ltd. 167 CONFIDENTIAL

Appendix B. API Reference

B.3.2. WDC_DriverOpen()

Purpose

Opens and stores a handle to WinDriver's kernel module and initializes the WDC library
according to the open options passed to it.
This function should be called once before calling any other WDC API.

Prototype

DWORD DLLCALLCONV WDC Dri ver Qpen(
WDC_DRV_OPEN_OPTI ONS openOpti ons,
const CHAR *sLicense);

Parameters
Name Type I nput/Output
openOptions WDC _DRV_OPEN_OPTIONS I nput
sLicense const CHAR* Input
Description
Name Description
openOptions A mask of any of the supported open flags [B.3.1.2], which determines
theinitialization actions that will be performed by the function.
sLicense WinDriver license registration string.

Thisargument isignored if the WDC_DRV_OPEN_REG LI Cflagis
not [B.3.1.2] setinthe openCpt i ons argument.

If this parameter isaNULL pointer or an empty string, the function
will attempt to register the demo WinDriver evaluation license.
Therefore, when evaluating WinDriver pass NULL as this parameter.
After registering your WinDriver toolkit, modify the code to pass your
WinDriver license registration string.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 168 CONFIDENTIAL

Appendix B. API Reference

B.3.3. WDC_DriverClose()

Purpose

Closes the WDC WinDriver handle (acquired and stored by a previous call to
WDC Dri ver Open() [B.3.2]) and uninitializes the WDC library.

Every WDC Dr i ver Qpen() call should have amatching WDC _Dr i ver Cl ose() call, which
should be issued when you no longer need to use the WDC library.

Prototype

DWORD DLLCALLCONV WDC Dri ver d ose(voi d);

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.4. WDC_PciScanDevices()

Purpose

Scans the PCI bus for all devices with the specified vendor and device ID combination and returns
information regarding the matching devices that were found and their locations. The function
performs the scan by iterating through all possible PCI buses on the host platform, then through

all possible PCI dots, and then through all possible PCI functions.

Scan-By-Topology Note

On rare occasions, as aresult of malfunctioning hardware, the scan information may
contain repeated instances of the same device. As aresult, the function might fail to
return valid scan data. In such cases, if you cannot remove the malfunctioning device,
you can scan the PCI bus using WDC_Pci ScanDevi cesByTopol ogy() [B.3.5] or
WDC Pci ScanRegi st er edDevi ces() [B.3.6].

Linux PPC64 WDC_PciScanRegisteredDevices() Note
On Linux PPC64, WDC_Pci ScanDevi ces() behaveslike
WDC Pci ScanRegi st er edDevi ces() [B.3.6].

Multiple Bridges PCI Scan Note

On operating systems with multiple host bridges — such as Linux PPC — the scan function
does not distinguish between PCI cards that are located on the same bus, slot, and function,
but on different bridges (domains); the scan results for such devices will be identical.

© 2015 Jungo Connectivity Ltd. 169 CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC _Pci ScanDevi ces(
DWORD dwVendor I d,
DWORD dwDevi cel d,
WDC_PCl _SCAN RESULT *pPci ScanResul t);

Parameters
Name Type I nput/Output
dwVendorld DWORD Input
dwDeviceld DWORD Input
pPci ScanResult WDC_PCI_SCAN_RESULT* Output
Description
Name Description
dwVendorld Vendor ID to search for, or 0 to search for all vendor IDs
dwDeviceld Device ID to search for, or 0 to search for al device IDs
pPci ScanResult A pointer to a structure that will be updated by the function with the
results of the PCI bus scan [B.3.1.10]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

* |f you set both the vendor and device IDsto zero, the function will return information regarding
all connected PCI devices.

B.3.5. WDC_PciScanDevicesByTopology()

Purpose

Scans the PCI bus for all devices with the specified vendor and device ID combination and returns
information regarding the matching devices that were found and their locations. The function
performs the scan by topology — i.e., for each located bridge the function scans the connected
devices and functions reported by the bridge, and only then proceeds to scan the next bridge.

© 2015 Jungo Connectivity Ltd. 170 CONFIDENTIAL

Appendix B. API Reference

* Inthe case of multiple host controllers, WDC _Pci ScanDevi cesByTopol ogy() will
perform the scan only for thefirst host controller.

» By default, use WDC_Pci ScanDevi ces() [B.3.4] to scan the PCI bus, unless adevice
malfunction intererferes — refer to the note in the description of Pci ScanDevi ces().

» The Multiple Bridges PCI Scan Note, in the documentation
of WOC_Pci ScanDevi ces() [B.3.4], appliesaso to
WDC Pci ScanDevi cesByTopol ogy().

Prototype

DWORD DLLCALLCONV WDC _Pci ScanDevi cesByTopol ogy(
DWORD dwwVendor I d,
DWORD dwDevi cel d,
WDC _PCl _SCAN RESULT *pPci ScanResul t);

Parameters
Name Type I nput/Output
dwVendorld DWORD Input
dwDeviceld DWORD Input
pPci ScanResult WDC _PCI_SCAN_RESULT* Output
Description
Name Description
dwVendorld Vendor ID to search for, or O to search for al vendor IDs
dwDeviceld Device ID to search for, or O to search for al device IDs
pPci ScanResult A pointer to a structure that will be updated by the function with the
results of the PCI bus scan [B.3.1.10]

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

* If you set both the vendor and device IDs to zero, the function will return information regarding
all connected PCI devices.

© 2015 Jungo Connectivity Ltd. 171 CONFIDENTIAL

Appendix B. API Reference

B.3.6. WDC_PciScanRegisteredDevices()

Purpose

Scans the PCI bus for all devices with the specified vendor and device ID combination that

have been registered to work with WinDriver, and returns information regarding the matching
devices that were found and their locations. The function performs the scan by iterating through
all possible PCI buses on the host platform, then through al possible PCI dots, and then through
all possible PCI functions.

* By default, use WDC_Pci ScanDevi ces() [B.3.4] to scan the PCI bus, unless adevice
malfunction intererferes — refer to the note in the description of Pci ScanDevi ces().

» The Multiple Bridges PCI Scan Note, in the documentation
of WDC_Pci ScanDevi ces() [B.3.4], appliesaso to
WDC Pci ScanRegi st er edDevi ces|().

Prototype

DWORD DLLCALLCONV WDC _Pci ScanRegi st er edDevi ces(
DWORD dwwVendor I d,
DWORD dwDevi cel d,
WDC_PCl _SCAN RESULT *pPci ScanResul t);

Parameters
Name Type I nput/Output
dwVendorld DWORD Input
dwDeviceld DWORD Input
pPci ScanResult WDC PCI_SCAN _RESULT* Output
Description
Name Description
dwVendorld Vendor ID to search for, or O to search for al vendor IDs
dwDeviceld Device ID to search for, or O to search for al device IDs
pPci ScanResult A pointer to a structure that will be updated by the function with the
results of the PCI bus scan [B.3.1.10]

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 172 CONFIDENTIAL

Appendix B. API Reference

Remarks

* If you set both the vendor and device IDs to zero, the function will return information regarding
all connected PCI devices that are registered with WinDriver.

B.3.7. WDC_PcmciaScanDevices()

Purpose

Scans the PCMCIA busfor all devices with the specified manufacturer and device ID
combination and returns information regarding the matching devices that were found and their
locations.

Prototype

DWORD DLLCALLCONV WDC_Pcnti aScanDevi ces(
WORD wivanuf acturerld,
WORD wDevi cel d,
WDC_PCMCI A_SCAN _RESULT *pPcnti aScanResult);

Parameters
Name Type I nput/Output
wManufacturerld WORD I nput
wDeviceld WORD I nput
pPcmciaScanResult WDC_PCMCIA_SCAN_RESULT* Output
Description
Name Description
wManufacturerld Manufacturer ID to search for, or 0 to search for all manufacturer IDs
wDeviceld Device ID to search for, or O to search for all device IDs

pPcmciaScanResult A pointer to a structure that will be updated by the function with the
results of the PCMCIA bus scan [B.3.1.11]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

* If you set both the vendor and device IDs to zero, the function will return information regarding
all connected PCI devices.

© 2015 Jungo Connectivity Ltd. 173 CONFIDENTIAL

Appendix B. API Reference

B.3.8. WDC_PciScanCaps()

Purpose

Scans the basic PCI capabilities of the given device for the specified capability (or for al
capabilities).

Prototype

DWORD DLLCALLCONV WDC_Pci ScanCaps(
WDC DEVI CE_HANDLE hDev,
DWORD dwCapl d,
WDC_PCl _SCAN_CAPS RESULT *pScanCapsResult);

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwCapld DWORD Input
pScanCapsResult WDC_PCI_SCAN_CAPS RESULT* Output
Description
Name Description
hDev Handleto aWDC PCI device structure, returned by
WDC Pci Devi ceOpen() [B.3.12]
dwCapld ID of the basic PCI capability for which to search, or
WD PClI _CAP_I D _ALL to searchfor al basic PCI capabilities
pScanCapsResult A pointer to a structure that will be updated by the function with the
results of the basic PCI capabilities scan [B.3.1.12]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 174 CONFIDENTIAL

Appendix B. API Reference

B.3.9. WDC_PciScanExtCaps()

Purpose

Scans the extended (PCI Express) PCI capabilities of the given device for the specified capability

(or for al capabilities).

Prototype

DWORD DLLCALLCONV WDC _Pci ScanExt Caps(
WDC_DEVI CE_HANDLE hDev,

DWORD dwCapl d,

WDC_PCl _SCAN_CAPS RESULT *pScanCapsResult);

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwCapld DWORD Input
pScanCapsResult WDC_PCI_SCAN_CAPS RESULT* Output
Description
Name Description
hDev Handleto aWDC PCI device structure, returned by
WDC Pci Devi ceOpen() [B.3.12]
dwCapld ID of the extended PCI capability for which to search, or
WD PClI _CAP_I D_ALL to search for al extended PCI capabilities
pScanCapsResult A pointer to a structure that will be updated by the function with the

results of the extended (PCl Express) PCI capabilities scan [B.3.1.12]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

175

CONFIDENTIAL

Appendix B. API Reference

B.3.10. WDC_PciGetDevicelnfo()

Purpose

Retrieves a PCI device's resources information (memory and I/O ranges and interrupt
information).

Prototype

DWORD DLLCALLCONV WDC _Pci Get Devi cel nf o(
WD _PCl _CARD_| NFO *pDevi cel nf o) ;

Parameters
Name Type I nput/Output
pDevicelnfo WD_PCI_CARD_INFO* I nput/Output
* pciSlot WD_PCI_SLOT Input
 Card WD_CARD Output
Description
Name Description
pDevicelnfo Pointer to a PCI device information structure [B.5.13]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Theresourcesinformation is obtained from the operating system's Plug-and-Play manager,
unless the information is not available, in which caseit isread directly from the PCI
configuration registers.

Note: On Windows, you must install an I NF file file, which registers your device with
WinDriver, before calling this function (see Section 15.1 regarding creation of INF files with
WinDriver).

* If the interrupt request (IRQ) number is obtained from the Plug-and-Play manager, it is
mapped, and therefore may differ from the physical IRQ number.

© 2015 Jungo Connectivity Ltd. 176 CONFIDENTIAL

Appendix B. API Reference

B.3.11. WDC_PcmciaGetDevicelnfo()

Purpose

Retrieves a PCMCIA device's resources information (memory and /O ranges and interrupt

information).

Prototype

DWORD DLLCALLCONV WDC_Pcnti aGet Devi cel nf o(
WD _PCMCI A_CARD | NFO *pDevi cel nf o) ;

Parameters
Name Type I nput/Output
pDevicelnfo WD_PCMCIA_CARD_INFO* I nput/Output
 pcmciaSlot WD_PCMCIA_SLOT Input
 Card WD_CARD Output
e cVersion CHAR Output
[WD_PCMCIA_VERSION_LEN]
» cManufacturer CHAR[WD_PCMCIA _ Output
MANUFACTURER_LEN]
* cProductName CHAR[WD_PCMCIA _ Output
PRODUCTNAME_LEN]
» wManufacturerld WORD Output
» wCardld WORD Output
» wFuncld WORD Output
Description
Name Description
pDevicelnfo Pointer to a PCMCIA device information structure [B.5.14]

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

177

CONFIDENTIAL

Appendix B. API Reference

Remarks

The resources information is obtained from the operating system's Plug-and-Play manager,
unless the information is not available, in which caseit isread directly from the PCMCIA
configuration registers.

Note: On Windows, you must install an I NF file, which registers your device with WinDriver,
before calling this function (see Section 15.1 regarding creation of INF files with WinDriver).

If the interrupt request (IRQ) number is obtained from the Plug-and-Play manager, itis
mapped, and therefore may differ from the physical IRQ number.

B.3.12. WDC_PciDeviceOpen()

Purpose

Allocates and initializesa WDC PCI device structure, registers the device with WinDriver, and
returns a handle to the device.

Thisfunction

» Verifiesthat none of the registered device resources (set in pDevi cel nf o- >Card. I t en)
are already locked for exclusive use.

. A resource can be locked for exclusive use by setting the f Not Shar abl e field of its
U WD _| TEMS structure [B.5.11] to 1, before calling WDC_Pci Devi ceQpen().

Maps the physical memory ranges found on the device both to kernel-mode and user-mode
address space, and stores the mapped addresses in the allocated device structure for future use.

Saves device resources information required for supporting the communication with the device.
For example, the function saves the interrupt request (IRQ) number and the interrupt type, as
well asretrieves and saves an interrupt handle, and thisinformation is later used when the user
calls functions to handle the device's interrupts.

If the caller selectsto use aKernel Plugln driver to communicate with the device, the function
opens a handle to this driver and stores it for future use.

Prototype

DWORD DLLCALLCONV WDC_Pci Devi ceOpen(
WDC_DEVI CE_HANDLE *phDev,

const WD _PCl _CARD | NFO *pDevi cel nf o,
const PVA D pDevCt x,

PVA D reserved,

const CHAR *pcKPDri ver Nane,

PVAO D pKPQOpenDat a) ;

© 2015 Jungo Connectivity Ltd. 178 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
phDev WDC_DEVICE_HANDLE* Output
pDevicelnfo const WD_PCI_CARD _INFO* Input
* pciSlot WD_PCI_SLOT Input
 Card WD_CARD Input
* dwlitems DWORD Input
* |tem WD_ITEMSWD_CARD_ITEMS] Input
e item DWORD Input
* fNotSharable DWORD Input
ol union Input
* Mem struct I nput
* pPhysicalAddr PHYS ADDR N/A
* gwBytes UINT64 I nput
 pTransAddr KPTR N/A
* pUserDirectAddr UPTR N/A
 dwBar DWORD Input
* dwOptions DWORD Input
* pReserved KPTR N/A
*10 struct Input
* pAddr KPTR Input
 dwBytes DWORD Input
 dwBar DWORD Input
* Int struct I nput
e dwlnterrupt DWORD Input
* dwOptions DWORD Input
* hinterrupt DWORD N/A
* dwReservedl DWORD N/A
* pReserved2 KPTR N/A
* Bus struct I nput
 dwBusType WD_BUS TYPE Input
 dwBusNum DWORD Input
* dwSlotFunc DWORD Input
pDevCtx const PVOID Input

© 2015 Jungo Connectivity Ltd.

179

CONFIDENTIAL

Appendix B. API Reference

Name Type I nput/Output
reserved PVOID
pcK PDriverName const CHAR* I nput
pKPOpenData PVOID I nput
Description
Name Description
phDev Pointer to a handle to the WDC device allocated by the function
pDevicelnfo Pointer to a PCI device information structure [B.5.13], which contains
information regarding the device to open
pDevCitx Pointer to device context information, which will be stored in the
device structure
reserved Reserved for future use

pcKPDriverName

Kernel Plugin driver name. Set to NULL when not required.

This parameter is used to open ahandleto aKernel Plugin

driver together with opening a handle to the device. Note that

this method cannot be used to acquire a handle to a 64-bit

Kernel Plugln driver from a 32-bit application. It istherefore
recommended to open a Kernel Plugin handle (when necessary) using
WDC_Ker nel Pl ugl nOpen() [B.3.19] (see Section 12.4).

pK POpenData

Kernel Plugln driver-open data to be passed to

WD _Ker nel Pl ugl nOpen() (seethe WinDriver PCI Low-L evel
API Reference). This parameter is applicable only when

pcKPDr i ver Nanme isnot NULL; otherwise, set it to NULL.

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

1. Thisfunction may be called only from the user mode.

2. If your card has alarge memory range that cannot be fully mapped to the kernel
address space, you can set the WD _| TEM MEM DO _NOT_MAP_KERNEL flag in the
| . Mem dwOpt i ons field of the relevant WD_| TEMS memory resource structure [B.5.11]
(pDevi cel nfo->Card. ltenfi].I.Mem dwQOpti ons), received from
WDC Pci Get Devi cel nf o(), before passing it to the device-open function. Thisflag
instructs the function to map the memory range only to the user-mode virtual address space,
and not to the kernel address space.

© 2015 Jungo Connectivity Ltd.

180 CONFIDENTIAL

Appendix B. API Reference

Note that if you select to set the WD _| TEM_MEM DO _NOT _MAP_KERNEL flag, the
device information structure that will be created by the function will not hold a kernel-
mapped address for this resource (the pAddr Desc[i] . pAddr base address kernel
mapping field of the relevant memory range in the WDC_DEVI CE structure [B.4.3]
will not be updated), and you will therefore not be able to rely on this mapping in
callsto WinDriver APIs— namely interrupt handling APIs or any API called from a
Kernel Plugin driver.

B.3.13. WDC_PcmciaDeviceOpen()

Purpose

Allocates and initializesa WDC PCMCIA device structure, registers the device with WinDriver,
and returns a handle to the device.

This function

Verifies that none of the registered device resources (setin pDevi cel nf o->Card. I tem
are already locked for exclusive use.

_ A resource can be locked for exclusive use by setting the f Not Shar abl e field of its
U WD | TEMS structure [B.5.11] to 1, before calling WDC_Pcnti aDevi ceCpen().

» Mapsthe device's physical memory ranges device both to kernel-mode and user-mode address
space, and stores the mapped addresses in the allocated device structure for future use.

» Saves device resources information required for supporting the communication with the device.
For example, the function saves the interrupt request (IRQ) number and the interrupt type, as
well asretrieves and saves an interrupt handle, and this information is later used when the user
calls functions to handle the device's interrupts.

* If the caller selectsto use aKernel Plugin driver to communicate with the device, the function
opens a handle to thisdriver and storesit for future use.

Prototype

DWORD DLLCALLCONV WDC_Pcnti abDevi ceOpen(
WDC_DEVI CE_HANDLE *phDev,
const WD_PCMCI A_CARD _I NFO *pDevi cel nf o,
const PVAO D pDevC x,
PVA D reserved,
const CHAR *pcKPDri ver Nane,
PVO D pKPOpenDat a) ;

© 2015 Jungo Connectivity Ltd. 181 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
phDev WDC_DEVICE_HANDLE* Output
pDevicelnfo const WD_PCMCIA_CARD_INFO* Input
 pcmciaSlot WD_PCMCIA_SLOT Input
 Card WD_CARD Input
* dwlitems DWORD Input
* |tem WD_ITEMSWD_CARD_ITEMS] Input
e item DWORD Input
* fNotSharable DWORD Input
ol union Input
* Mem struct I nput
* pPhysicalAddr PHYS ADDR Input
* gwBytes UINT64 I nput
 pTransAddr KPTR N/A
* pUserDirectAddr UPTR N/A
 dwBar DWORD Input
* dwOptions DWORD Input
* pReserved KPTR N/A
*10 struct Input
* pAddr KPTR Input
 dwBytes DWORD Input
 dwBar DWORD Input
* Int struct N/A
e dwlnterrupt DWORD Input
* dwOptions DWORD Input
* hinterrupt DWORD N/A
* dwReservedl DWORD N/A
* pReserved2 KPTR N/A
* Bus struct I nput
 dwBusType WD_BUS TYPE Input
 dwBusNum DWORD Input
* dwSlotFunc DWORD Input

© 2015 Jungo Connectivity Ltd.

182

CONFIDENTIAL

Appendix B. API Reference

Name Type I nput/Output
e cVersion CHAR Input
[WD_PCMCIA_VERSION_LEN]
» cManufacturer CHAR[WD_PCMCIA _ Input
MANUFACTURER_LEN]
* cProductName CHAR[WD_PCMCIA _ Input
PRODUCTNAME_LEN]
» wManufacturerld WORD Input
» wCardld WORD Input
» wFuncld WORD Input
pDevCtx const PVOID Input
reserved PVOID
pcKPDriverName const CHAR* Input
pKPOpenData PVOID Input
Description
Name Description
phDev Pointer to a handle to the WDC device allocated by the function
pDevicelnfo Pointer to a PCMCIA device information structure [B.5.14], which
contains information regarding the device to open
pDevCtx Pointer to device context information, which will be stored in the
device structure
reserved Reserved for future use
pcK PDriverName Kernel Plugln driver name. Set to NULL when not required.
This parameter is used to open ahandleto aKernel Plugin
driver together with opening a handle to the device. Note that
this method cannot be used to acquire a handle to a 64-bit
Kernel Plugln driver from a 32-bit application. It is therefore
recommended to open a Kernel Plugln handle (when necessary) using
WDC Ker nel Pl ugl nOpen() [B.3.19] (see Section 12.4).
pK POpenData Kernel Plugln driver-open data to be passed to

WD _Ker nel Pl ugl nOpen() (seethe WinDriver PCI Low-L evel
API Reference). This parameter is applicable only when
pcKPDr i ver Name isnot NULL; otherwise, set it to NULL.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

183 CONFIDENTIAL

Appendix B. API Reference

Remarks
1. Thisfunction may be called only from the user mode.

2. If your card has alarge memory range that cannot be fully mapped to the kernel
address space, you can set the WD | TEM MEM DO _NOT_MAP_KERNEL flag in the
| . Mem dwOpt i ons field of the relevant WD_| TEMS memory resource structure [B.5.11]
(pDevi cel nfo->Card. Itenfi].I.Mem dwOpti ons), received from
WDC _Pcnti aGet Devi cel nf o(), before passing it to the device-open function. This flag
instructs the function to map the memory range only to the user-mode virtual address space,
and not to the kernel address space.

Note that if you select to set the WD _| TEM_MEM DO _NOT _MAP_KERNEL flag, the
device information structure that will be created by the function will not hold a kernel-
mapped address for this resource (the pAddr Desc[i] . pAddr base address kernel
mapping field of the relevant memory range in the WDC_DEVI CE structure [B.4.3]
will not be updated), and you will therefore not be able to rely on this mapping in
callsto WinDriver APIs— namely interrupt handling APIs or any API called from a
Kernel Plugin driver.

B.3.14. WDC IsaDeviceOpen()

Purpose

Allocates and initializesaWDC ISA device structure, registers the device with WinDriver, and
returns a handle to the device.

This function

» Verifiesthat none of the registered device resources (setin pDevi cel nf o- >Card. I t en)
are already locked for exclusive use.

@ A resource can be locked for exclusive use by setting the f Not Shar abl e field of its
v WD | TEMS structure [B.5.11] to 1, before calling WDC | saDevi ceQpen().

» Mapsthe device's physical memory ranges device both to kernel-mode and user-mode address
space, and stores the mapped addresses in the allocated device structure for future use.

» Saves device resources information required for supporting the communication with the device.
For example, the function saves the interrupt request (IRQ) number and the interrupt type, as
well asretrieves and saves an interrupt handle, and thisinformation islater used when the user
calls functions to handle the device's interrupts.

 |f the caler selectsto use aKernel Plugln driver to communicate with the device, the function
opens a handle to thisdriver and storesit for future use.

© 2015 Jungo Connectivity Ltd. 184 CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC | saDevi ceOpen(
WDC_DEVI CE_HANDLE *phDev,
const WD _CARD *pDevi cel nf o,
const PVA D pDevCt x,
PVA D reserved,
const CHAR *pcKPDri ver Nane,
PVAO D pKPQOpenDat a) ;

Parameters
Name Type I nput/Output
phDev WDC_DEVICE_HANDLE* Output
pDevicelnfo const WD_CARD* Input
* dwlitems DWORD Input
e [tem WD_ITEMS[WD_CARD_ITEMS] I nput
* jtem DWORD I nput
* fNotSharable DWORD Input
* union Input
* Mem struct I nput
* pPhysical Addr PHYS ADDR Input
* gwBytes UINT64 I nput
* pTransAddr KPTR N/A
* pUserDirectAddr UPTR N/A
* dwBar DWORD Input
* dwOptions DWORD Input
* pReserved KPTR N/A
*10 struct I nput
* pAddr KPTR Input
* dwBytes DWORD Input
* dwBar DWORD Input
* Int struct I nput
* dwinterrupt DWORD Input
* dwOptions DWORD Input
* hinterrupt DWORD N/A
* dwReservedl DWORD N/A
* pReserved2 KPTR N/A

© 2015 Jungo Connectivity Ltd. 185 CONFIDENTIAL

Appendix B. API Reference

Name Type I nput/Output
* Bus struct I nput
* dwBusType WD_BUS TYPE I nput
* dwBusNum DWORD Input
* dwSlotFunc DWORD Input
pDevCtx const PVOID Input
reserved PVOID N/A
pcKPDriverName const CHAR* Input
pKPOpenData PVOID Input
Description
Name Description
phDev Pointer to a handle to the WDC device allocated by the function
pDevicelnfo Pointer to a card information structure [B.5.12], which contains
information regarding the device to open
pDevCtx Pointer to device context information, which will be stored in the
device structure
reserved Reserved for future use
pcKPDriverName Kernel Plugln driver name. Set to NULL when not required.
This parameter is used to open a handle to aKernel Plugin
driver together with opening a handle to the device. Note that
this method cannot be used to acquire a handle to a 64-bit
Kernel Plugin driver from a 32-bit application. It is therefore
recommended to open a Kernel Plugln handle (when necessary) using
WDC _Ker nel Pl ugl nOpen() [B.3.19] (see Section 12.4).
pK POpenData Kernel Plugln driver-open data to be passed to

WD _Ker nel Pl ugl nOpen() (seethe WinDriver PCI Low-L evel
API Reference). This parameter is applicable only when
pcKPDr i ver Name isnot NULL; otherwise, set it to NULL.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

186 CONFIDENTIAL

Appendix B. API Reference

Remarks
1. Thisfunction may be called only from the user mode.

2. If your card has alarge memory range that cannot be fully mapped to the kernel
address space, you can set the WD | TEM MEM DO _NOT_MAP_KERNEL flag in the
| . Mem dwOpt i ons field of the relevant WD_| TEMS memory resource structure [B.5.11]
(pDevi cel nfo->Card. Itenfi].I.Mem dwOpti ons) before passing it to the
device-open function. This flag instructs the function to map the memory range only to the
user-mode virtual address space, and not to the kernel address space.

Note that if you select to set the WD _| TEM_MEM DO _NOT _MAP_KERNEL flag, the
device information structure that will be created by the function will not hold a kernel-
mapped address for this resource (the pAddr Desc[i] . pAddr base address kernel
mapping field of the relevant memory range in the WDC_DEVI CE structure [B.4.3]
will not be updated), and you will therefore not be able to rely on this mapping in
callsto WinDriver APIs— namely interrupt handling APIs or any API called from a
Kernel Plugin driver.

© 2015 Jungo Connectivity Ltd. 187 CONFIDENTIAL

Appendix B. API Reference

B.3.15. WDC_PciDeviceClose()

Purpose

Uninitializesa WDC PCI device structure and frees the memory allocated for it.

Prototype

DWORD DLLCALLCONV WDC Pci Devi ceC ose(WDC_DEVI CE_ HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to aWDC PCI device structure, returned by

WDC Pci Devi ceOpen() [B.3.12]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction can be called from the user mode only.

© 2015 Jungo Connectivity Ltd.

188

CONFIDENTIAL

Appendix B. API Reference

B.3.16. WDC_PcmciaDeviceClose()

Purpose

Uninitializesa WDC PCMCIA device structure and frees the memory allocated for it.

Prototype

DWORD DLLCALLCONV WDC _Pcnti aDevi ced ose(WDC_DEVI CE_HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handleto aWDC PCMCIA device structure, returned by

WDC Pcnti aDevi ceOpen() [B.3.13]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction can be called from the user mode only.

© 2015 Jungo Connectivity Ltd.

189

CONFIDENTIAL

Appendix B. API Reference

B.3.17. WDC IsaDeviceClose()

Purpose

Uninitializesa WDC ISA device structure and frees the memory allocated for it.

Prototype

DWORD DLLCALLCONV WDC | saDevi ceC ose(WDC_DEVI CE_ HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handleto aWDC ISA device structure, returned by

Return Value

WDC | saDevi ceOpen() [B.3.14]

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction can be called from the user mode only.

© 2015 Jungo Connectivity Ltd.

190

CONFIDENTIAL

Appendix B. API Reference

B.3.18. WDC_CardCleanupSetup()

Purpose

Setsalist of transfer cleanup commands to be performed for the specified card on any of the

following occasions:

» The application exits abnormally.

» The application exits normally but without closing the specified card.

» If thebFor ceCl eanup parameter is set to TRUE, the cleanup commands will also be

performed when the specified card is closed.

Prototype

DWORD WDC_Car dd eanupSet up(
WDC_DEVI CE_HANDLE hDev,
WD_TRANSFER * Cnd,

DWORD dwCnds,
BOOL bFor ced eanup);

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
Cmd WD_TRANSFER* I nput
dwCmds DWORD Input
bForceCleanup BOOL Input

© 2015 Jungo Connectivity Ltd. 191

CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
Cmd Pointer to an array of cleanup transfer commands to be
performed [B.5.16]
dwCmds Number of cleanup commandsin the Cd array
bForceCleanup If FALSE: The cleanup transfer commands (Cnd) will be performed in

either of the following cases:

» When the application exits abnormally.

» When the application exits normally without closing the card by
calling one of the WDC_xxxDevi ceC ose() functions (PCI [B.3.15]
/ PCMCIA [B.3.16] / ISA [B.3.17]).

If TRUE: The cleanup transfer commands will be performed both in the
two cases described above, aswell asin the following case:

* When the relevant WD_xxxDevi ceCl ose() functioniscalled for
the card.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.19. WDC_KernelPlugIinOpen()

Purpose

Opens ahandleto aKernel Plugin driver.

Prototype

DWORD DLLCALLCONV WDC_Ker nel Pl ugl nOpen(
WDC_DEVI CE_HANDLE hDev,
const CHAR *pcKPDri ver Nane,
PVO D pKPOpenDat a) ;

Parameters
Name Type I nput/Output
hDev WDC DEVICE_HANDLE I nput/Output
pcK PDriverName const CHAR* I nput
pKPOpenData PVOID I nput

© 2015 Jungo Connectivity Ltd. 192 CONFIDENTIAL

Appendix B. API Reference

Description

Name Description

hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

pcK PDriverName Kernel Plugln driver name

pKPOpenData Kernel Plugln driver open data to be passed to
WD _Ker nel Pl ugl nOpen() (seethe WinDriver PCI Low-L evel
APl Reference)

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

It's also possible to use the WDC _xxxDevi ceOpen() functions (PCI [B.3.12] /

PCMCIA [B.3.13] / ISA [B.3.14]) to open a handle to aKernel Plugln driver, as part of the
device-open operation. However, this method cannot be used to open a handle to a 64-bit Kernel
Plugln driver from a 32-bit user-mode application. Therefore, to ensure that your code worksin
all the supported configurations, it is recommended that you use WDC_Ker nel Pl ugl nOpen()
to open the Kernel Plugln driver handle. Thisis also the only supported method for opening a
Kernel Plugin handle from a.NET application. (See detailed information in Section 12.4.)

B.3.20. WDC_CallKerPlug()

Purpose

Sends a message from a user-mode application to a Kernel Plugln driver. The function passes a
message | D from the application to the Kernel Plugin'sKP_Cal | [B.6.4] function, which should
be implemented to handle the specified message ID, and returns the result from the Kernel Plugin
to the user-mode application.

Prototype

DWORD DLLCALLCONV WDC_Cal | Ker Pl ug(
WDC_DEVI CE_HANDLE hDev,
DWORD dwivkg,
PVQO D pbDat a,
PDWORD pdwResul t);

© 2015 Jungo Connectivity Ltd. 193 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC _DEVICE HANDLE I nput
dwMsg DWORD Input
pData PVOID I nput/Output
pdwResult pdwResult Output
Description
Name Description
hDev Handleto aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
dwMsg A message ID to passto the Kernel Plugin driver (specificaly to
KP_Cal | [B.6.4])
pData Pointer to data to pass between the Kernel Plugin driver and the user-
mode application
pdwResult Result returned by the Kernel Plugin driver (KP_Cal |) for the
operation performed in the kernel as aresult of the message that was
sent

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.21. WDC_ReadMemXXX()

Purpose

WDC_ReadMenB/ 16/ 32/ 64() reads 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes (32 bits) / 8
bytes (64 bits), respectively, from a specified memory address. The addressis read directly in the
calling context (user mode / kernel mode).

Prototype

BYTE WDC_ReadMenB(addr, off);
WORD WDC_ReadMenil6(addr, off);
U NT32 WDC_ReadMenB2(addr, off);
U NT64 WDC_ReadMenb64(addr, off);

Note: The WDC_ReadMenXXX APIs are implemented as macros. The prototypes above use
functions declaration syntax to emphasize the expected return values.

© 2015 Jungo Connectivity Ltd. 194 CONFIDENTIAL

Appendix B. API Reference

Parameters

Name Type I nput/Output

addr DWORD Input

of f DWORD Input
Description

Name Description

addr The memory address space to read from

of f The offset from the beginning of the specified address space (addr) to

read from

Return Value

Returns the data that was read from the specified address.

B.3.22. WDC_WriteMemXXX()

Purpose

WDC Wit eMenB/ 16/ 32/ 64() writes 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes (32 bits) / 8
bytes (64 bits), respectively, to a specified memory address. The addressiswritten to directly in
the calling context (user mode / kernel mode).

Prototype

void WbC_WiteMenB(addr, off, val);

void WbC_WiteMenil6(addr, off, val);
void WbC_WiteMenB2(addr, off, val);
void WbC_WiteMenb4(addr, off, val);

Note: The WDC_W i t eMemXXX APIs are implemented as macros. The prototypes above use
functions declaration syntax to emphasize the expected return values.

Parameters
Name Type I nput/Output
addr DWORD Input
of f DWORD Input
va BYTE/WORD / Input
UINT32/ UINT64

© 2015 Jungo Connectivity Ltd.

195

CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
addr The memory address space to read from
of f The offset from the beginning of the specified address space (addr) to
read from
va The data to write to the specified address

Return Value

None

B.3.23. WDC_ReadAddrXXX()

Purpose

WDC ReadAddr 8/ 16/ 32/ 64() reads 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes (32 bits) / 8
bytes (64 bits), respectively, from a specified memory or /O address.

Prototype

DWORD DLLCALLCONV WDC_ReadAddr 8(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwOf fset, BYTE *val);

DWORD DLLCALLCONV WDC_ReadAddr 16(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwOf fset, WORD *val);

DWORD DLLCALLCONV WDC_ReadAddr 32(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwOf fset, U NT32 *val);

DWORD DLLCALLCONV WDC_ReadAddr 64(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwOf fset, U NT64 *val);

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwAddrSpace DWORD Input
dwOffset KPTR Input
va BYTE* / WORD* / Output

UINT32* / UINT64*
© 2015 Jungo Connectivity Ltd. 196 CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceQpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
dwAddrSpace The memory or 1/0 address space to read from
dwOffset The offset from the beginning of the specified address space
(dwAddr Space) to read from
va Pointer to a buffer to be filled with the data that is read from the
specified address

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.24. WDC_WriteAddrXXX()

Purpose

WDC Wit eAddr 8/ 16/ 32/ 64() writes 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes (32 bits) / 8
bytes (64 bits), respectively, to a specified memory or I/O address.

Prototype

DWORD DLLCALLCONV WDC W i t eAddr 8(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwCf fset, BYTE val)

DWORD DLLCALLCONV WDC W it eAddr 16(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwOF fset, WORD val);

DWORD DLLCALLCONV WDC W i t eAddr 32(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwCf fset, U NT32 val);

DWORD DLLCALLCONV WDC W i t eAddr 64(WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space, KPTR dwCf fset, U NT64 val);

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwAddrSpace DWORD Input
dwOffset KPTR Input
va BYTE/WORD / Input
UINT32/UINT64

© 2015 Jungo Connectivity Ltd. 197 CONFIDENTIAL

Appendix B. API Reference

Description

Name Description

hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

dwAddrSpace The memory or 1/0 address space to write to

dwOffset The offset from the beginning of the specified address space
(dwAddr Space) to writeto

va The data to write to the specified address

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.25. WDC_ReadAddrBlock()

Purpose

Reads a block of data from the device.

Prototype

DWORD DLLCALLCONV WDC_ReadAddr Bl ock(
WDC DEVI CE_HANDLE hDev,
DWORD dwAddr Space,

KPTR dwOf f set
DWORD dwByt es,

PVO D pDat a,

WDC_ADDR_MODE node,
WDC_ADDR_RW OPTI ONS opti ons) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwAddrSpace DWORD Input
dwOffset KPTR Input
dwBytes DWORD Input
pData PVOID Output
mode WDC_ADDR_MODE Input
options WDC_ADDR_RW_OPTIONS Input
© 2015 Jungo Connectivity Ltd. 198 CONFIDENTIAL

Appendix B. API Reference

Description

Name Description

hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

dwAddrSpace The memory or 1/0 address space to read from

dwOffset The offset from the beginning of the specified address space
(dwAddr Space) to read from

dwBytes The number of bytesto read

pData Pointer to a buffer to be filled with the data that is read from the device

mode The read access mode — see WOC_ADDR_MCDE [B.3.1.4]

options A bit mask that determines how the datawill be read — see

WDC ADDR RW OPTI ONS[B.3.1.5].
The function automatically sets the WDC_RW BLOCK flag.

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.26. WDC_WriteAddrBlock()

Purpose

Writes ablock of datato the device.

Prototype

DWORD DLLCALLCONV WDC W it eAddr Bl ock(
WDC_DEVI CE_HANDLE hDev,
DWORD dwAddr Space,

KPTR dwOf f set
DWORD dwByt es,
PVA D pDat a,

WDC_ADDR_MODE nmode,
WDC_ADDR_RW OPTI ONS opti ons);

© 2015 Jungo Connectivity Ltd.

199 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwAddrSpace DWORD Input
dwOffset KPTR Input
dwBytes DWORD Input
pData PVOID Input
mode WDC_ADDR_MODE Input
options WDC_ADDR_RW_OPTIONS Input
Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
dwAddrSpace The memory or 1/0 address space to write to
dwOffset The offset from the beginning of the specified address space
(dwAddr Space) to writeto
dwBytes The number of bytesto write
pData Pointer to a buffer that holds the data to write to the device
mode The write access mode — see WDC_ADDR_MODE [B.3.1.4]
options A bit mask that determines how the data will be written — see

WDC ADDR RW OPTI ONS[B.3.1.5].
The function automatically sets the WDC_RW BLOCK flag.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.27. WDC_MultiTransfer()

Purpose

Performs a group of memory and/or I/O read/write transfers.

Prototype

DWORD DLLCALLCONV WDC_Mul ti Tr ansf er (
WD_TRANSFER *pTr ans,
DWORD dwNumiTr ans) ;

© 2015 Jungo Connectivity Ltd.

200 CONFIDENTIAL

Appendix B. API Reference

Parameters

Name Type I nput/Output

pTrans WD_TRANSFER*

dwNumTrans DWORD Input
Description

Name Description

pTrans Pointer to an array of transfer commands information

structures [B.5.16]
dwNumTrans Number of transfer commandsin the pTr ans array

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

* Thetransfers are performed using the low-level WD_Mul t i Tr ansf er () WinDriver function,
which reads/writes the specified addresses in the kernel (see the WinDriver PCI Low-L evel
API Referencefor details).

* Memory addresses are read/written in the kernel (like 1/0 addresses) and NOT directly in
the user mode, therefore the port addresses passed to this function, for both memory and I/O
addresses, must be the kernel-mode mappings of the physical addresses, which are stored in the
device structure [B.4.3].

B.3.28. WDC_AddrSpacelsActive()

Purpose

Checksif the specified memory or 1/O address space is active — i.e,, if its size is not zero.

Prototype

BOOL DLLCALLCONV WDC_Addr Spacel sAct i ve(
WDC DEVI CE_HANDLE hDev,
DWORD dwAddr Space) ;

© 2015 Jungo Connectivity Ltd.

201

CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwAddrSpace DWORD Input
Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
dwAddrSpace The memory or 1/0 address space to look for

Return Value

Returns TRUE if the specified address space is active; otherwise returns FALSE.

B.3.29. WDC_PciReadCfgBySlot()

Purpose

Reads data from a specified offset in a PCl device's configuration space or a PCl Express device's
extended configuration space.
The deviceisidentified by its location on the PCI bus.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCI Express as well.

Prototype

DWORD DLLCALLCONV WDC_Pci ReadCf gBy Sl ot (
WD _PCl _SLOT *pPci Sl ot
DWORD dwOr f set,
PVA D pDat a,
DWORD dwByt es) ;

© 2015 Jungo Connectivity Ltd. 202 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
pPciSlot WD_PCl_SLOT* Input
dwOffset DWORD Input
pData PVOID Output
dwBytes DWORD Input
Description
Name Description
pPciSlot Pointer to a PCI device |location information structure [B.5.8], which
can be acquired by calling WDC_Pci ScanDevi ces() [B.3.4]
dwOffset The offset from the beginning of the PCI configuration space to read
from
pData Pointer to a buffer to be filled with the data that is read from the PCI
configuration space
dwBytes The number of bytesto read

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.30. WDC_PciWriteCfgBySlot()

Purpose

Write data to a specified offset in a PCI device's configuration space or a PCl Express device's
extended configuration space.
The deviceisidentified by its location on the PCI bus.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCl Express as well.

Prototype

DWORD DLLCALLCONV WDC _Pci Wit eCf gBySl ot (
WD _PCl _SLOT *pPci Sl ot
DWORD dwCrf f set
PVQO D pDat a,
DWORD dwByt es) ;

© 2015 Jungo Connectivity Ltd. 203 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
pPciSlot WD_PCI_SLOT* Input
dwOffset DWORD Input
pData PVOID I nput
dwBytes DWORD Input
Description
Name Description
pPciSlot Pointer to a PCI device location information structure [B.5.8], which
can be acquired by caling WDC _Pci ScanDevi ces() [B.3.4]
dwOffset The offset from the beginning of the PCI configuration space to write
to
pData Pointer to a data buffer that holds the data to write
dwBytes The number of bytesto write

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.31. WDC_ PciReadCfg|()

Purpose

Reads data from a specified offset in a PCl device's configuration space or a PCl Express device's
extended configuration space.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCI Express as well.

Prototype

DWORD DLLCALLCONV WDC _Pci ReadCf g(
WDC DEVI CE_HANDLE hDev,
DWORD dwCr f set ,
PVA D pDat a,
DWORD dwBYyt es) ;

© 2015 Jungo Connectivity Ltd. 204 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwOffset DWORD Input
pData PVOID Output
dwBytes DWORD Input
Description
Name Description
hDev Handleto aWDC PCI device structure, returned by
WDC Pci Devi ceOpen() [B.3.12]
dwOffset The offset from the beginning of the PCI configuration space to read
from
pData Pointer to a buffer to be filled with the data that is read from the PCI
configuration space
dwBytes The number of bytesto read

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.32. WDC_PciWriteCfg()

Purpose

Writes data to a specified offset in a PCl device's configuration space or a PCl Express device's
extended configuration space.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCI Express as well.

Prototype

DWORD DLLCALLCONV WDC _Pci Wit eCf g(
WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set
PVA D pDat a,
DWORD dwBYyt es) ;

© 2015 Jungo Connectivity Ltd. 205 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwOffset DWORD Input
pData PVOID I nput
dwBytes DWORD Input
Description
Name Description
hDev Handleto aWDC PCI device structure, returned by
WDC Pci Devi ceOpen() [B.3.12]
dwOffset The offset from the beginning of the PCI configuration space to write
to
pData Pointer to a data buffer that holds the data to write
dwBytes The number of bytesto write

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.33. WDC_PciReadCfgBySlotXXX()

Purpose

WDC_Pci ReadCf gBy Sl ot 8/ 16/ 32/ 64() reads 1 byte (8 hits) / 2 bytes (16 bits) / 4 bytes (32
bits) / 8 bytes (64 bits), respectively, from a specified offset in a PCl device's configuration space
or a PCI Express device's extended configuration space.
The deviceisidentified by its location on the PCI bus.

Access to the PCl Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references

in the following documentation include PCI Express as well.

© 2015 Jungo Connectivity Ltd.

206

CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC _Pci ReadCf gRegBy Sl ot 8(
WD PCl _SLOT *pPci Sl ot, DWORD dwOF fset, BYTE *val);

DWORD DLLCALLCONV WDC_Pci ReadCf gReg1By Sl ot 6(
WD PCl _SLOT *pPci Sl ot, DWORD dwOF fset, WORD *val);

DWORD DLLCALLCONV WDC _Pci ReadCf gReg32By Sl ot (

WD PCl _SLOT *pPci Sl ot, DWORD dwOf fset, U NT32 *val);

DWORD DLLCALLCONV WDC _Pci ReadCf gReg64By Sl ot (

WD PCl _SLOT *pPci Sl ot, DWORD dwOf fset, U NT64 *val);

Parameters
Name Type I nput/Output
pPciSlot WD_PCI_SLOT* Input
dwOffset DWORD Input
va BYTE* / WORD* / Output
UINT32* / UINT64*
Description
Name Description
pPciSlot Pointer to a PCI device location information structure [B.5.8], which
can be acquired by calling WDC_Pci ScanDevi ces() [B.3.4]
dwOffset The offset from the beginning of the PCI configuration space to read
from
va Pointer to a buffer to be filled with the data that is read from the PCI
configuration space

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.34. WDC_PciWriteCfgBySlotXXX()

Purpose

WDC Pci Wit eCf gBySl ot 8/ 16/ 32/ 64() writes 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes
(32 hits) / 8 bytes (64 hits), respectively, to a specified offset in a PCI device's configuration space

or a PCI Express device's extended configuration space.
The deviceisidentified by its location on the PCI bus.

© 2015 Jungo Connectivity Ltd. 207

CONFIDENTIAL

Appendix B. API Reference

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCl Express as well.

Prototype

DWORD DLLCALLCONV WDC Pci Wi t eCf gRegBy S| ot 8(
WD_PCI_SLOT *pPci Sl ot, DWORD dwOi f set, BYTE val);

DWORD DLLCALLCONV WDC Pci Wi t eCf gRegBy Sl ot 16(
WD_PCI _SLOT *pPci Sl ot, DWORD dwOf f set, WORD val);

DWORD DLLCALLCONV WDC Pci Wi t eCf gRegBy Sl ot 32(
WD_PCI _SLOT *pPci Sl ot, DWORD dwOf fset, U NT32 val);

DWORD DLLCALLCONV WDC Pci Wi t eCf gRegBy S| ot 64(
WD_PClI _SLOT *pPci Sl ot, DWORD dwOffset, Ul NT64 val);

Parameters
Name Type I nput/Output
pPciSlot WD_PCI_SLOT* I nput
dwOffset DWORD Input
val BYTE/WORD / Input
UINT32/UINT64
Description
Name Description
pPciSlot Pointer to a PCI device |location information structure [B.5.8], which
can be acquired by calling WDC_Pci ScanDevi ces() [B.3.4]
dwOffset The offset from the beginning of the PCI configuration space to read
from
val The data to write to the PCI configuration space

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 208 CONFIDENTIAL

Appendix B. API Reference

B.3.35. WDC_PciRead CfgXXX()

Purpose

WDC Pci ReadCf g8/ 16/ 32/ 64() reads 1 byte (8 bits) / 2 bytes (16 bits) / 4 bytes (32 hits) / 8
bytes (64 bits), respectively, from a specified offset in a PCl device's configuration space or a PCI
Express device's extended configuration space.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCl Express as well.

Prototype

DWORD DLLCALLCONV WDC_Pci ReadCf gReg8(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, BYTE *val);

DWORD DLLCALLCONV WDC_Pci ReadCf gReg16(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, WORD *val) ;

DWORD DLLCALLCONV WDC_Pci ReadCf gReg32(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, UINT32 *val);

DWORD DLLCALLCONV WDC_Pci ReadCf gReg64(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, Ul NT64 *val);

Parameters
Name Type I nput/Output
hDev WDC _DEVICE HANDLE Input
dwOffset DWORD Input
va BYTE* / WORD* / Output
UINT32* / UINT64*
Description
Name Description
hDev Handleto aWDC PCI device structure, returned by
WDC_Pci Devi ceOpen() [B.3.12]
dwOffset The offset from the beginning of the PCI configuration space to read
from
va Pointer to a buffer to be filled with the data that is read from the PCI
configuration space

© 2015 Jungo Connectivity Ltd. 209 CONFIDENTIAL

Appendix B. API Reference

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.36. WDC_PciWriteCfgXXX()

Purpose

WDC Pci Wit eCf g8/ 16/ 32/ 64() writes 1 byte (8 bits) / 2 bytes (16 hits) / 4 bytes (32 bits) /
8 bytes (64 bits), respectively, to a specified offset in a PCI device's configuration space or a PCl
Express device's extended configuration space.

Access to the PCI Express extended configuration space is supported on target platforms
that support such access (e.g., Windows and Linux). For such platforms, all PCI references
in the following documentation include PCl Express as well.

Prototype

DWORD DLLCALLCONV WDC _Pci Wi t eCf gReg8(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, BYTE val);

DWORD DLLCALLCONV WDC Pci Wi t eCf gReg16(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, WORD val) ;

DWORD DLLCALLCONV WDC Pci Wi t eCf gReg32(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, U NT32 val);

DWORD DLLCALLCONV WDC Pci Wi t eCf gReg64(WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set, Ul NT64 val);

Parameters
Name Type I nput/Output
hDev WDC _DEVICE HANDLE Input
dwOffset DWORD Input
va BYTE/WORD / Input
UINT32/ UINT64
Description
Name Description
hDev Handle to aWDC PCI device structure, returned by
WDC Pci Devi ceOpen() [B.3.12]
dwOffset The offset from the beginning of the PCI configuration space to read
from
va The data to write to the PCI configuration space

© 2015 Jungo Connectivity Ltd. 210 CONFIDENTIAL

Appendix B. API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.37. WDC_PcmciaReadAttribSpace()

Purpose

Reads data from a specified offset in a PCMCIA device's attribute space.

Prototype

DWORD DLLCALLCONV WDC _Pcnti aReadAttri bSpace(
WDC DEVI CE_HANDLE hDev,
DWORD dwOr f set
PVA D pDat a,
DWORD dwBYyt es) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
dwOffset DWORD Input
pData PVOID Output
dwBytes DWORD Input
Description
Name Description
hDev Handleto aWDC PCMCIA device structure, returned by
WDC _Pcnti aDevi ceOpen() [B.3.13]
dwOffset The offset from the beginning of the PCMCIA attribute space to read
from
pData Pointer to a buffer to be filled with the data that is read from the
PCMCIA attribute space
dwBytes The number of bytesto read

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 211 CONFIDENTIAL

Appendix B. API Reference

B.3.38. WDC_PcmciaWriteAttribSpace()

Purpose

Writes data to a specified offset in aPCMCIA device's attribute space.

Prototype

DWORD DLLCALLCONV WDC Pcnti aWiteAttri bSpace(
WDC_DEVI CE_HANDLE hDev,
DWORD dwOr f set
PVO D pDat a,
DWORD dwByt es) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwOffset DWORD Input
pData PVOID I nput
dwBytes DWORD Input
Description
Name Description
hDev Handle to aWDC PCMCIA device structure, returned by
WDC Pcnti aDevi ceOpen() [B.3.13]
dwOffset The offset from the beginning of the PCMCIA attribute space to write
to
pData Pointer to a data buffer that holds the data to write
dwBytes The number of bytesto write

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.39. WDC _PcmciaSetWindow()

Purpose

Modifies the settings of the PCMCIA bus controller's memory window.

© 2015 Jungo Connectivity Ltd. 212 CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC_Pcnti aSet W ndow(
WDC_DEVI CE_HANDLE hDev,
WD_PCMCI A_ACC_SPEED speed,
WD_PCMCI A_ ACC_ W DTH wi dt h,
DWORD dwCar dBase) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
speed WD_PCMCIA_ACC_SPEED Input
width WD_PCMCIA_ACC WIDTH I nput
dwCardBase DWORD Input
Description
Name Description
hDev Handleto aWDC PCMCIA device structure, returned by
WDC Pcnti aDevi ceOpen() [B.3.13]
speed The access speed to the PCMCIA bus — see the
WD PCMCI A ACC_SPEED enumeration [B.5.3]
width The PCMCIA bus width — seethe WD_PCMCI A_ ACC_W DTH
enumeration [B.5.4]
dwCardBase The offset in the PCMCIA device's memory from which the memory
mapping begins

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.40. WDC_PcmciaSetVpp()

Purpose

Modifies the power level of the PCMCIA bus controller's Voltage Power Pin (Vpp).

Prototype

DWORD DLLCALLCONV WDC_Pcnti aSet Vpp(
WDC DEVI CE_HANDLE hDev,
WD_PCMCI A VPP vpp);

© 2015 Jungo Connectivity Ltd. 213 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
vpp WD_PCMCIA_VPP Input
Description
Name Description
hDev Handleto aWDC PCMCIA device structure, returned by
WDC _Pcnti aDevi ceOpen() [B.3.13]
vpp The power level of the PCMCIA controller's VVoltage Power Pin (Vpp)
— seethe WD_PCMCI A_VPP enumeration [B.5.5]

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.41. WDC_DMAContigBufLock()

Purpose

Allocates a contiguous DMA buffer, locksit in physical memory, and returns mappings of the
allocated buffer to physical address space and to user-mode and kernel virtual address spaces.

Prototype

DWORD DLLCALLCONV WDC_DMACont i gBuf Lock(
WDC_DEVI CE_HANDLE hDev,

PVO D *ppBuf,
DWORD dwOpt i ons,

DWORD dwDMABuUf Si ze,

WD_DVA **ppDma) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE | nput
ppBuf PVOID* Output
dwOptions DWORD Input
dwDMABUufSize DWORD Input
ppDma WD_DMA** Output

© 2015 Jungo Connectivity Ltd.

214

CONFIDENTIAL

Appendix B. API Reference

Description

Name

Description

hDev

Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14]).

ppBuf

Pointer to a pointer to be filled by the function with the user-mode
mapped address of the allocated DMA buffer

dwOptions

A bit mask of any of the following flags (defined in an enumeration in
windrvr.h):

 DMA_FROM DEVI CE: Synchronize the DMA buffer for transfers
from the device to memory.

* DMA_TO _DEVI CE: Synchronize the DMA buffer for transfers from
memory to the device.

* DMVA TO_FROM DEVI CE: Synchronize the DMA buffer for
transfersin both directions — i.e., from the device to memory

and from memory to the device (<=> DMVA_FROM DEVI CE |
DVA TO DEVI CE).

* DMA_ALLOW CACHE: Allow caching of the memory.
 DVA_KBUF_BELOW 16M Allocate the physical DMA buffer within
the lower 16MB of the main memory.

* DMA_ALLOW 64BI T_ADDRESS: Allow allocation of 64-bit DMA
addresses. Thisflag is supported on Windows and Linux.

dwDMABuUfSize

The size (in bytes) of the DMA buffer

ppDma

Pointer to a pointer to a DMA buffer information structure [B.5.15],
which is allocated by the function.

The pointer to this structure (* ppDa) should be passed to

WDC _DMABuUf Unl ock() [B.3.43] when the DMA buffer is no longer
needed.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» When calling this function you do not need to set the
DVA KERNEL BUFFER_ALLQOCflag, since the function sets this flag automatically.

» Thisfunction is currently only supported from the user mode.

* On Windows x86 and x86_64 platforms, you should normally set the DMA_ALLOW CACHE
flag in the DMA options bitmask parameter (dwOpt i ons).

© 2015 Jungo Connectivity Ltd.

215 CONFIDENTIAL

Appendix B. API Reference

* If the device supports 64-bit DMA addresses, it is recommended to set the
DVA ALLOW 64BI T_ADDRESS flag in dwQOpt i ons. Otherwise, when the physical memory
on the target platformis larger than 4GB, the operating system may only allow allocation of
relatively small 32-bit DMA buffers (such as 1IMB buffers, or even smaller).

B.3.42. WDC_DMASGBufLock()

Purpose

Locks a pre-allocated user-mode memory buffer for DMA and returns the corresponding physical
mappings of the locked DMA pages. On Windows the function also returns a kernel-mode
mapping of the buffer.

Prototype

DWORD DLLCALLCONV WDC_DMASGBuUf Lock(
WDC DEVI CE_HANDLE hDev,
PVO D pBuf,
DWORD dwOpt i ons,
DWORD dwDMABUT Si ze,
WD_DVA **ppDma) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
pBuf PVOID Input
dwOptions DWORD Input
dwDMABUufSize DWORD Input
ppDma WD_DMA** Output

© 2015 Jungo Connectivity Ltd. 216 CONFIDENTIAL

Appendix B. API Reference

Description

Name Description

hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

pBuf Pointer to a user-mode buffer to be mapped to the allocated physical
DMA buffer(s)

dwOptions A bit mask of any of the following flags (defined in an enumeration in
windrvr.h):

 DMA_FROM DEVI CE: Synchronize the DMA buffer for transfers
from the device to memory.

* DMA_TO _DEVI CE: Synchronize the DMA buffer for transfers from
memory to the device.

* DMVA TO_FROM DEVI CE: Synchronize the DMA buffer for
transfersin both directions — i.e., from the device to memory

and from memory to the device (<=> DMVA_FROM DEVI CE |
DVA TO DEVI CE).

* DMA_ALLOW CACHE: Allow caching of the memory.

* DMA_ALLOW 64BI T_ADDRESS: Allow allocation of 64-bit DMA
addresses. Thisflag is supported on Windows and Linux.

dwDMABUufSize The size (in bytes) of the DMA buffer

ppDma Pointer to a pointer to aDMA buffer information structure [B.5.15],
which is allocated by the function.

The pointer to this structure (* ppDa) should be passed to
WDC_DMABuUf Unl ock() [B.3.43] when the DMA buffer is no longer
needed.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

* When calling the function to allocate large buffers (> 1IMB) you do not need to set the
DVA LARGE BUFFER flag, which isused for alocation of large Scatter/Gather DMA buffers
using the low-level WinDriver WD_DMALock () function (see the WinDriver PCI Low-Leve
API Reference), since WDC_DVASGBuUf Lock() handles this for you.

» Thisfunction is currently only supported from the user mode.

* On Windows x86 and x86_64 platforms, you should normally set the DMA_ALLOW CACHE
flag in the DMA options bitmask parameter (dwOpt i ons).

© 2015 Jungo Connectivity Ltd. 217 CONFIDENTIAL

Appendix B. API Reference

* If the device supports 64-bit DMA addresses, it is recommended to set the
DVA ALLOW 64BI T_ADDRESS flag in dwQOpt i ons. Otherwise, when the physical memory
on the target platformis larger than 4GB, the operating system may only allow allocation of
relatively small 32-bit DMA buffers (such as 1IMB buffers, or even smaller).

B.3.43. WDC_DMABufUnlock()

Purpose

Unlocks and frees the memory allocated for aDMA buffer by a previous call to
WDC_DIVACont i gBuf Lock() [B.3.41] or WDC_DMASGBuf Lock() [B.3.42].

Prototype

DWORD DLLCALLCONV WDC_DMABUf Unl ock(WD_DNVA * pDnm) ;

Parameters
Name Type I nput/Output
pDma WD_DMA* I nput
Description
Name Description
pDma Pointer to a DMA information structure [B.5.15], received from

aprevious cal to WbC_DMVACont i gBuf Lock() [B.3.41] (for a
contiguous DMA buffer) or WDC_DIVASGBuUf Lock() [B.3.42] (for a
Scatter/Gather DMA buffer) — * ppDna returned by these functions

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction is currently only supported from the user mode.

© 2015 Jungo Connectivity Ltd. 218 CONFIDENTIAL

Appendix B. API Reference

B.3.44. WDC_DMASyncCpu()

Purpose

Synchronizes the cache of all CPUs with the DMA buffer, by flushing the data from the CPU
caches.

This function should be called before performing a DMA transfer (see Remarks below).

Prototype

DWORD DLLCALLCONV WDC_DMASyncCpu(WD _DVA *pDma) ;

Parameters
Name Type I nput/Output
pDma WD_DMA* I nput
Description
Name Description
pDma Pointer to a DMA information structure [B.5.15], received from

aprevious cal to WbC_DVACont i gBuf Lock() [B.3.41] (for a
contiguous DMA buffer) or WDC_DIVASGBuUf Lock() [B.3.42] (for a
Scatter/Gather DMA buffer) — * ppDna returned by these functions

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» An asynchronous DMA read or write operation accesses data in memory, not in the processor
(CPU) cache, which resides between the CPU and the host's physical memory. Unless the
CPU cache has been flushed, by calling WDC_DMASync Cpu(), just before aread transfer,
the data transferred into system memory by the DMA operation could be overwritten with
stale dataif the CPU cache is flushed later. Unless the CPU cache has been flushed by calling
WDC_ DMASyncCpu() just before awrite transfer, the datain the CPU cache might be more up-
to-date than the copy in memory.

» Thisfunction is currently only supported from the user mode.

© 2015 Jungo Connectivity Ltd. 219 CONFIDENTIAL

Appendix B. API Reference

B.3.45. WDC_DMASynclo()

Purpose

Synchronizes the I/O caches with the DMA buffer, by flushing the data from the I/O caches and
updating the CPU caches.

This function should be called after performing a DMA transfer (see Remarks below).

Prototype

DWORD DLLCALLCONV WDC_DMVASyncl o(WD_DVA * pDna) ;

Parameters
Name Type I nput/Output
pDma WD_DMA* Input
Description
Name Description
pDma Pointer to a DMA information structure, received from a previous call

to WDC_DMACont i gBuf Lock() [B.3.41] (for a contiguous DMA
buffer) or WDC_DIVASGBuUf Lock() [B.3.42] (for a Scatter/Gather
DMA buffer) — * ppDma returned by these functions

Return Value

Returns\WD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» After aDMA transfer has been completed, the data can still be in the 1/0 cache, which resides
between the host's physical memory and the bus-master DMA device, but not yet in the
host's main memory. If the CPU accesses the memory, it might read the wrong data from
the CPU cache. To ensure a consistent view of the memory for the CPU, you should call
WDC _DMASyncl o() after aDMA transfer in order to flush the data from the 1/0O cache and
update the CPU cache with the new data. The function also flushes additional caches and
buffers between the device and memory, such as caches associated with bus extenders or
bridges.

» Thisfunction is currently only supported from the user mode.

© 2015 Jungo Connectivity Ltd. 220 CONFIDENTIAL

Appendix B. API Reference

B.3.46. WDC_SharedBufferAlloc()

Purpose

Allocates amemory buffer that can be shared between the user mode and the kernel mode
(" shared buffer"), and returns user-mode and kernel-mode virtual address space mappings of the
allocated buffer.

4= Thisfunction provides a useful method for sharing data between a user-mode application
v and aKernel Plugln driver.

Prototype

DWORD DLLCALLCONV WDC_Shar edBuf f er Al | oc(
PVO D *ppUser Addr,
KPTR *ppKer nel Addr,
DWORD dwBuf Si ze,
DWORD dwOpt i ons,
HANDLE *phBuf) ;

Parameters
Name Type I nput/Output
ppUserAddr PVOID Output
ppKernel Addr KPTR Output
dwBuUfSize DWORD Input
dwOptions DWORD Input
phBuf HANDLE* Output
Description
Name Description
ppUserAddr Pointer to a pointer to be filled by the function with the user-mode
mapped address of the allocated buffer
ppKernel Addr Pointer to a pointer to be filled by the function with the kernel-mode
mapped address of the allocated buffer
dwBuUfSize The size of the buffer to allocate, in bytes
dwOptions Reserved for future use. Initialize thisfield to O.
phBuf Pointer to a handle to the alocated buffer, to be filled by the function.
When the buffer is no longer needed, the handle
to the buffer (* phBuf) should be passed to
WDC_Shar edBuf f er Fr ee() [B.3.47].

© 2015 Jungo Connectivity Ltd. 221 CONFIDENTIAL

Appendix B. API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction is currently only supported from the user mode.

B.3.47. WDC_SharedBufferFree()

Purpose

Frees a shared buffer that was allocated by a previous call to
WDC_Shar edBuf f er Al | oc() [B.3.46].

Prototype

#def i ne WDC_Shar edBuf f er Fr ee(hBuf)

Parameters
Name Type I nput/Output
hBuf HANDLE Input
Description
Name Description
hBuf Handle to a shared buffer, received within the * phBuf parameter of a
previous call to WDC_Shar edBuf f er Al | oc() [B.3.46]

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction is currently only supported from the user mode.

© 2015 Jungo Connectivity Ltd. 222 CONFIDENTIAL

Appendix B. API Reference

B.3.48. WDC_IntEnable()

Purpose
Enables interrupt handling for the device.

On Linux and Windows Vista and higher, when attempting to enable interrupts for a PCI device
that supports Extended Message-Signaled Interrupts (M SI-X) or Message-Signaled Interrupts
(MSI) (and wasinstalled with arelevant INF file— on Windows [9.2.7.1]), the function first
triesto enable MSI-X or MSl; if thisfails, or if the target OS does not support MSI/MSI-X, the
function attempts to enable legacy level-sensitive interrupts (if supported by the device).

On Linux, you can use the function's dwOptions parameter to specify the types of PCI interrupts
that may be enabled for the device (see the explanation in the parameter description).

For other types of hardware (PCI with no MSI/MSI-X support / PCMCIA /1SA), the function
attempts to enable the legacy interrupt type supported by the device (Level Sensitive/ Edge
Triggered) — see further information in Section 9.2.

When enabling interrupts using a K er nel Plugln driver (f UseKP=TRUE), the
Kernel Plugln functions used to handle the interrupts are derived from the type

of interrupts enabled for the device: for MSI/MSI-X, the KP_I nt At | r ql VSI
and KP_I nt At DpcVBI functions are used; otherwise, the KP_I nt At | r gl and
KP_I nt At Dpc functions are used.

If the caller selects to handle the interrupts in the kernel, using a Kernel Plugln driver, the Kernel
PluginKP_I nt At I r gl [B.6.8] (legacy interrupts) or KP_I nt At | r gl MSI [B.6.10] (MSI/
MSI-X) function, which runs at high interrupt request level (IRQL), will be invoked immediately
when an interrupt is received.

The function can receive transfer commands information, which will be performed by WinDriver
at the kernel, at high IRQ level, when an interrupt is received (see further information in

Section 9.2.6). If aKernel Plugln driver is used to handle the interrupts, any transfer commands
set by the caller will be executed by WinDriver after the Kernel Plugin KP_I nt At Dpc or

KP_I nt At DpcVSI function completes its execution.

When handling level-sensitive interrupts (such as legacy PCI interrupts) from the user mode,
without a Kernel Plugln driver, you must prepare and pass to the function transfer commands
for acknowledging the interrupt. When using a K ernel Plugln driver, the information for
acknowledging the interrupts should be implemented in the Kernel Plugin KP_I nt At | r gl
function [B.6.8], so the transfer commands in the call to WDC _| nt Enabl e() are not required
(although they can still be used).

The function receives a user-mode interrupt handler routine, which will be called by WinDriver
after the kernel-mode interrupt processing is completed.

If the interrupts are handled using aK ernel Plugln driver, the return value of the Kernel

Plugln deferred interrupt handler function — KP_I nt At Dpc [B.6.9] (Iegacy interrupts)

or KP_I nt At DpcMsI [B.6.11] (MSI/MSI-X) — will determine how many times

(if at al) the user-mode interrupt handler will be called (provided KP_I nt At Dpc or

KP_I nt At DpcVBI itself is executed — which is determined by the return value of the Kernel
PluginKP_I nt At I rqgl [B.6.8] or KP_I nt At | r ql M5l [B.6.10] function).

© 2015 Jungo Connectivity Ltd. 223 CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC | nt Enabl e(
WDC_DEVI CE_HANDLE hDev,
WD_TRANSFER *pTr ansCnds,

DWORD dwNumCnds,
DWORD dwOpt i ons,

I NT_HANDLER f uncl nt Handl er,

PVA D pDat a,
BOCOL f UseKP);
Parameters
Name Type I nput/Output
hDev WDC_DEVICE HANDLE Input
pTransCmds WD_TRANSFER* I nput
dwNumCmds DWORD Input
dwOptions DWORD Input
funcintHandler typedef void (*INT_HANDLER)(Input
PVOID pData);
pData PVOID Input
fUseKP BOOL Input
Description
Name Description
hDev Handle to aWDC device, returned by WDC_xxxDevi ceQpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
pTransCmds An array of transfer commands information structures that define the
operations to be performed at the kernel level upon the detection of an
interrupt, or NULL if no transfer commands are required.
NOTE:
» Memory allocated for the transfer commands must remain available
until the interrupts are disabled .
» When handling level-sensitive interrupts (such as legacy PCI
interrupts) without a Kernel Plugin [11], you must use this array
to define the hardware-specific commands for acknowledging the
interrupts in the kernel, immediately when they are received — see
further information in Section 9.2.
For an explanation on how to set the transfer commands, refer to
the description of WD_TRANSFER in Section B.5.16, and to the
explanation in Section 9.2.6.
dwNumCmds Number of transfer commandsin the pTr ansCnds array

© 2015 Jungo Connectivity Ltd.

224 CONFIDENTIAL

Appendix B. API Reference

Name

Description

dwOptions

A bit mask of interrupt handling flags — can be set to zero for no

options, or to acombination of any of the following flags:

e | NTERRUPT_CMD_COPY: If set, WinDriver will copy any data
read in the kernel as aresult of aread transfer command, and return
it to the user within the relevant transfer command structure.

The user will be able to access the data from his user-mode interrupt
handler routine (f uncl nt Handl er).

The following flags are applicable only to PCI interrupts on Linux. If

set, these flags determine the types of interrupts that may be enabled

for the device — the function will attempt to enable only interrupts of
the specified types, using the following precedence order, provided the
type is reported as supported by the device:

e | NTERRUPT_MESSACE X: Extended Message-Signaled Interrupts
(MSI-X)

* | NTERRUPT _MESSAGE: Message-Signaled Interrupts (M SI)

e | NTERRUPT_LEVEL_SENSI Tl VE — Legacy level-sensitive
interrupts

funclntHandler

A user-mode interrupt handler callback function, which will be
executed after an interrupt is received and processed in the kernel. (The
prototype of the interrupt handler — | NT_HANDLER — is defined in
windrvr_int_thread.h).

pData Data for the user-mode interrupt handler callback routine
(f uncl nt Handl er)
fUseKP If TRUE — The device's Kernel Plugln driver's

KP_IntAtlrgl [B.6.8] or KP_I ntAtlrqgl MSl [B.6.10] function,
which runs at high interrupt request level (IRQL), will be executed
immediately when an interrupt is received. The Kernel Plugin driver
to be used for the device is passed to WDC_xxxDevi ceQpen() and
stored in the WDC device structure.

If the caller also passes transfer commands to the function

(pTr ansCrds), these commands will be executed by WinDriver

at the kernel, at high IRQ level, after KP_I nt At I r gl or

KP_I nt At lrgl MSI completesits execution.

If the high-IRQL handler returns TRUE, the Kernel Plugin

deferred interrupt processing routine— KP_I nt At Dpc [B.6.9] or
KP_I nt At DpcVSI [B.6.11] — will be invoked. The return value

of this function determines how many times (if at all) the user-mode
interrupt handler (f uncl nt Handl er) will be executed once the
control returns to the user mode.

If FALSE — When an interrupt is received, any transfer commands
set by the user in pTr ansCnds will be executed by WinDriver at the
kernel, at high IRQ level, and the user-mode interrupt handler routine
(f uncl nt Handl er) will be executed when the control returnsto the
user mode.

© 2015 Jungo Connectivity Ltd.

225 CONFIDENTIAL

Appendix B. API Reference

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks
» Thisfunction can be called from the user mode only.

» The function enables interrupt handling in the software. After it returns successfully you must
physically enable generation of interrupts in the hardware (you should be able to do so by
writing to the device from the code).

* A successful call to this function must be followed with acall to WDC_I nt Di sabl e() later on
in the code, in order to disable the interrupts.
The WDC_xxxDri ver A ose() functions (PCl: [B.3.15], PCMCIA: [B.3.16], ISA: [B.3.17])
call WDC _I nt Di sabl e() if the device's interrupts are enabled.

* WinDriver must be registered with the OS as the driver of the device before enabling interrupts.
For Plug-and-Play hardware (PCI/PCl ExpresssPCMCIA) on Windows platforms, this
association is made by installing an INF file for the device [15.1]. If the INF fileis not
installed, WDC | nt Enabl e() will fail withaWD_NO_DEVI CE_COBJECT error [B.9].

© 2015 Jungo Connectivity Ltd. 226 CONFIDENTIAL

Appendix B. API Reference

B.3.49. WDC_IntDisable()

Purpose

Disables interrupt interrupt handling for the device, pursuant to a previous call to
WDC | nt Enabl e() [B.3.48].

Prototype

DWORD DLLCALLCONV WDC I nt Di sabl e(WDC_DEVI CE_ HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction can be called from the user mode only.

© 2015 Jungo Connectivity Ltd. 227 CONFIDENTIAL

Appendix B. API Reference

B.3.50. WDC_IntIsEnabled ()

Purpose

Checksif adevice'sinterrupts are currently enabled.

Prototype

BOOL DLLCALLCONV WDC | nt | sEnabl ed(WDC_DEVI CE_HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

Return Value

Returns TRUE if the device's interrupts are enabled; otherwise returns FALSE.

© 2015 Jungo Connectivity Ltd. 228 CONFIDENTIAL

Appendix B. API Reference

B.3.51. WDC_EventReqgister()

Purpose

Registers the application to receive Plug-and-Play and power management events notifications for

the device.

Prototype

DWORD DLLCALLCONV WDC_Event Regi st er (
WDC _DEVI CE_HANDLE hDev,
DWORD dwAct i ons,
EVENT_HANDLER f uncEvent Handl er,

PVA D pDat a,
BOOL f UseKP);
Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE Input
dwActions DWORD Input
funcEventHandler typedef void (*EVENT_HANDLER)(Input
WD_EVENT *pEvent,
void *pData);
pData PVOID I nput
fUseKP BOOL Input

© 2015 Jungo Connectivity Ltd. 229

CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
hDev Handle to a Plug-and-Play WDC device, returned

by WDC_Pci Devi ceOpen() [B.3.12] or
WDC_Pcnti aDevi ceOpen() [B.3.13]

dwActions A bit mask of flags indicating which events to register to:
Plug-and-Play events:

* WD _| NSERT — Deviceinserted

* WD_REMOVE — Device removed

Device power state change events:

* WD _POVNER_CHANGED DO — Full power

« WD _POWER CHANGED D1 — Low sleep

WD _POWER CHANGED D2 — Medium sleep

WD _POWER CHANGED D3 — Full sleep

« WD POVWER _SYSTEM WORKI NG— Fully on

Systems power state:

« WD _POAER_SYSTEM SLEEPI NGL — Fully on but sleeping

* WD _POWNER_SYSTEM SLEEPI N&G2 — CPU off, memory on,
PCI/PCMCIA on

* WD _POWNER_SYSTEM SLEEPI NG3 — CPU off, Memory isin
refresh, PCI/PCMCIA on aux power

* WD _POWNER_SYSTEM HI BERNATE — OS saves context before

shutdown
* WD _POVNER_SYSTEM SHUTDOWN — No context saved
funcEventHandler A user-mode event handler callback function, which will be called

when an event for which the caller registered to receive notifications
(seedwAct i ons) occurs. (The prototype of the event handler —
EVENT_HANDLER — isdefined in windrvr_events.h.)

pData Data for the user-mode event handler callback routine
(funcEvent Handl er)
fUseKP If TRUE — When an event for which the caller registered to receive

notifications (dwAct i ons) occurs, the device's Kernel Plugln driver's
KP_Event function [B.6.5] will be called. (The Kernel Plugin driver
to be used for the deviceis passed to WDC_xxxDevi ceQpen() and
stored in the WDC device structure).

If this function returns TRUE, the user-mode events handler callback
function (f uncEvent Handl er) will be called when the kernel-
mode event processing is completed.

If FALSE — When an event for which the caller registered to receive
notifications (dwAct i ons) occurs, the user-mode events handler
callback function will be called.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 230 CONFIDENTIAL

Appendix B. API Reference

Remarks
» Thisfunction can be called from the user mode only.
» A successful call to this function must be followed with acall to

WDC _Event Unr egi st er () [B.3.52] later on in the code, in order to unregister from
receiving Plug-and-play and power management notifications from the device.

B.3.52. WDC_EventUnregister()

Purpose

Unregisters an application from areceiving Plug-and-Play and power management notifications
for adevice, pursuant to aprevious call to WDC_Event Regi st er () [B.3.51].

Prototype

DWORD DLLCALLCONV WDC_Event Unr egi st er (WDC_DEVI CE_HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to a Plug-and-Play WDC device, returned

by WDC _Pci Devi ceOpen() [B.3.12] or
WDC Pcnti aDevi ceOpen() [B.3.13]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

» Thisfunction can be called from the user mode only.

© 2015 Jungo Connectivity Ltd. 231 CONFIDENTIAL

Appendix B. API Reference

B.3.53. WDC_EventisRegistered()

Purpose

Checksiif the application is currently registered to receive Plug-and-Play and power management
notifications for the device.

Prototype

BOOL DLLCALLCONV WDC_Event | sRegi st er ed(WDC_DEVI CE_HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to a Plug-and-Play WDC device, returned

by WDC _Pci Devi ceOpen() [B.3.12] or
WDC Pcnti aDevi ceOpen() [B.3.13]
Return Value

Returns TRUE if the application is currently registered to receive Plug-and-Play and power
management notifications for the device; otherwise returns FAL SE.

B.3.54. WDC_SetDebugOptions|()

Purpose

Sets debug options for the WDC library — see the description of WDC_DBG_OPTI ONS [B.3.1.8]
for details regarding the possible debug options to set.

Thisfunction istypically called at the beginning of the application, after the call to
WDC_Dr i ver Open() [B.3.2], and can be re-called at any time while the WDC library isin use
(i.e, WDC _Dri ver C ose() [B.3.3] has not been called) in order to change the debug settings.

Until the function is called, the WDC library uses the default debug options — see
WDC _DBG DEFAULT [B.3.1.9].

When the function isrecalled, it performs any required cleanup for the previous debug settings
and sets the default debug options before attempting to set the new options specified by the caller.

© 2015 Jungo Connectivity Ltd. 232 CONFIDENTIAL

Appendix B. API Reference

Prototype

DWORD DLLCALLCONV WDC_Set DebugOpt i ons(
WDC_DBG_OPTI ONS dbgOpti ons,
const CHAR *sDbgFile);

Parameters
Name Type I nput/Output
dbgOptions WDC _DBG_OPTIONS Input
sDbgFile const CHAR* Input
Description
Name Description
dbgOptions A bit mask of flags indicating the desired debug settings — see

WDC_DBG_OPTI ONS [B.3.1.9].
If this parameter is set to zero, the default debug options will be used
— see WDC_DBG_DEFAULT [B.3.1.8].

sDbgFile WDC debug output file.

This parameter isrelevant only if the WDC_DBG_OUT_FI LE

flag is set in the debug options (dbgQOpt | ons) (either directly

or viaone of the convenience debug options combinations — see
WDC_DBG_OPTI ONS [B.3.1.9)).

If the WDC_DBG_OUT_FI LE debug flag isset and sDbgFi | e is
NULL, WDC debug messages will be logged to the default debug file
— stderr.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.55. WDC_Err()

Purpose

Displays debug error messages according to the WDC debug options — see
WDC_DBG_OPTI ONS [B.3.1.8] and WDC_Set DebugOpt i ons() [B.3.54].
Prototype

voi d DLLCALLCONV WDC Err (
const CHAR *f or mat
[, argunent] ...);

© 2015 Jungo Connectivity Ltd. 233 CONFIDENTIAL

Appendix B. API Reference

Parameters

Name Type I nput/Output
format const CHAR* Input
argument I nput
Description

Name Description

format Format-control string, which contains the error message to display.

The string is limited to 256 characters (CHAR)
argument Optional arguments for the format string

Return Value

None

B.3.56. WDC_ Trace()

Purpose

Displays debug trace messages according to the WDC debug options — see

WDC_DBG_OPTI ONS [B.3.1.8] and WDC_Set DebugQOpt i ons() [B.3.54].

Prototype

voi d DLLCALLCONV WDC Trace(
const CHAR *f or mat

[, argunent] ...);

Parameters

Name Type I nput/Output
format const CHAR* Input
argument I nput
Description

Name Description

format Format-control string, which contains the trace message to display.

The string is limited to 256 characters (CHAR)
argument Optional arguments for the format string

© 2015 Jungo Connectivity Ltd.

234

CONFIDENTIAL

Appendix B. API Reference

Return Value

None

B.3.57. WDC_GetWDHandle()

Purpose
Returns a handle to WinDriver's kernel module, which is required by the basic WD_xx X

WinDriver PCI/PCMCIA/ISA API, described in the WinDriver PCl Low-Level APl Reference
(see Remarks below).

Prototype

HANDLE DLLCALLCONV WDC_Get WDHandl e(voi d) ;

Return Value

Returns a handle to WinDriver's kernel module, or | NVALI D_HANDLE VALUE in case of a
failure

Remarks

* When using only the WDC AP, you do not need to get a handle to WinDriver, since the
WDC library encapsulates this for you. This function enables you to get the WinDriver
handles used by the WDC library so you can passit to low-level WD_xxx API, if such
APIsare used from your code. In such cases, take care not to close the handle you received
(using WD_Cl ose()). The handle will be closed by the WDC library when it is closed, using
WDC Dri ver C ose() [B.3.3]. Thelow-level WD_xxx API isdescribed in the WinDriver
PCI Low-Level APl Reference.

B.3.58. WDC_GetDevContext()

Purpose

Returns the device's user context information.

Prototype

PVO D DLLCALLCONV WDC_Get DevCont ext (WDC_DEVI CE_HANDLE hDev) ;

© 2015 Jungo Connectivity Ltd. 235 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput

Description

‘ Name ’ Description ‘
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()

(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

Return Value

Returns a pointer to the device's user context, or NULL if no context has been set.

B.3.59. WDC_GetBusType()

Purpose

Returns the device's bus type: WDO_BUS PCl , WD _BUS PCMCI A, WD _BUS | SAor
WD _BUS _UNKNOWN.

Prototype

WD _BUS TYPE DLLCALLCONV WDC Get BusType(\WDC_DEVI CE_HANDLE hDev) ;

Parameters
Name Type I nput/Output
hDev WDC_DEVICE_HANDLE I nput
Description
Name Description
hDev Handle to aWDC device, returned by WDC xxxDevi ceOpen()
(PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])

Return Value

Returns the device's bus type [B.5.1].

© 2015 Jungo Connectivity Ltd. 236 CONFIDENTIAL

Appendix B. API Reference

B.3.60. WDC_Sleep()

Purpose

Delays execution for the specified duration of time (in microseconds).
By default the function performs a busy sleep (consumes CPU cycles).

Prototype

DWORD DLLCALLCONV WDC_Sl eep(
DWORD dwM croSecs,
WDC_SLEEP_OPTI ONS opti ons);

Parameters

Name Type I nput/Output

dwMicroSecs DWORD Input

options WDC_SLEEP_OPTIONS I nput
Description

Name Description

dwMicroSecs The number of microseconds to sleep

options Sleep options [B.3.1.7]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.3.61. WDC_Version()

Purpose

Returns the version number of the WinDriver kernel module used by the WDC library.

Prototype

DWORD DLLCALLCONV WDC_Ver si on(
CHAR *sVer si on,
DWORD * pdwMer si on) ;

© 2015 Jungo Connectivity Ltd. 237 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
sversion CHAR* Output
pdwVersion DWORD* Output
Description
Name Description
sversion Pointer to a pre-allocated buffer to be filled by the function with the
driver's version information string.
The size of the version string buffer must be at |east 128 bytes
(characters).
pdwVersion Pointer to a value indicating the version number of the WinDriver
kernel module used by the WDC library

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

B.4. WDC Low-Level API

This section described the WDC types and preprocessor definitions defined in the
WinDriver/include/wdc_defs.h header file.

B.4.1. WDC_ID_U Union

WDC device ID information union (used for PCl and PCMCIA devices).

Field Type Description

pcild WD_PCI_ID PCI device ID information
structure [B.5.6]

pcmciald WD_PCMCIA_ID PCMCIA device ID information
structure [B.5.7]

© 2015 Jungo Connectivity Ltd. 238 CONFIDENTIAL

Appendix B. API Reference

B.4.2. WDC_ADDR_DESC Structure

PCI/PCMCIA/ISA device memory or 1/0O address space information structure.

Field

Type

Description

dwAddrSpace

DWORD

The address space number

flsMemory

BOOL

* TRUE: memory address space.
* FALSE: 1/0 address space.

dwltemlndex

DWORD

The index of the WD _| TEMS structure [B.5.11]

for the address space, which isretrieved and

stored by WDC xxxDevi ceOpen() inthe

car dReg. Car d. | t emarray of the relevant WDC
device information structure [B.4.3]

dwBytes

DWORD

The address space's size (in bytes)

pAddr

KPTR

The kernel-mode mapping of the address space's
physical base address.

This addressis used by the WDC API for accessing
amemory or /O region using the low-level

WD Transfer () orWD_Mul ti Transfer () APIs
(described in the WinDriver PCI Low-Level API
Reference), or when accessing memory address directly
in the kernel.

pUserDirectMemAddr

UPTR

The user-mode mapping of a memory address space's
physical base address.

This addressis used for accessing memory addresses
directly from the user mode.

B.4.3. WDC_DEVICE Structure

PCI/PCMCIA/ISA device information structure.
The WDC_xxxDevi ceOpen() functions (PCI [B.3.12] / PCMCIA [B.3.13] / ISA [B.3.14])
allocate and return device structures of this type.

Field Type Description

id WDC ID U Device ID information union
(relevant for PCl and PCMCIA
devices) — see[B.4.1]

dot WDC SLOT U Device location information
structure — see description of
WDC SLOT_Uin Section B.3.1.9

dwNumAddrSpaces | DWORD Number of address spaces found

on the device

© 2015 Jungo Connectivity Ltd.

239 CONFIDENTIAL

Appendix B. API Reference

Field

Type

Description

pAddrDesc

WDC_ADDR_DESC*

Array of memory and I/10
address spaces information
structures [B.4.2]

cardReg

WD_CARD_REGISTER

WinDriver device resources
information structure,

returned by the low-level

WD _Car dRegi st er () function
(seethe WinDriver PCI
Low-Level APl Reference),
whichiscaled by the

WDC xxxDevi ceOpen()
functions

kerPlug

WD_KERNEL_PLUGIN

Kernel Plugin driver information
structure [B.7.1].

This structure isfilled by

the functions used to open a
handle to aKernel Plugin for a
WDC_DEVI CE [12.4] — either
WDC Ker nel Pl ugl nOpen()
[B.3.19], or one of the

WDC xxxDevi ceOpen()
functions (PCI [B.3.12] /
PCMCIA [B.3.13] / ISA [B.3.14])
when called with the name of a
Kernel Plugindriver —and is
maintained by the WDC library.
If no Kernel Plugin handle

was opened for the device, this
structure is not used.

Int

WD_INTERRUPT

Interrupt information structure.
This structure isfilled by the

WDC xxxDevi ceOpen()
functions for devicesthat have
interrupts, and is maintained by the
WDC library.

hintThread

DWORD

Handle to the interrupt thread
that is spawn when interrupts are
enabled.

This handleis passed by WDC to
the low-level WinDriver interrupt
APIs. When using the WDC API
you do not need to accessthis
handle directly.

© 2015 Jungo Connectivity Ltd.

240

CONFIDENTIAL

Appendix B. API Reference

Field Type Description

Event WD_EVENT WinDriver Plug-and-Play and
power management events
information structure — see
Event Regi st er () description
inthe WinDriver PCI Low-Leve
API Reference for details.

hEvent HANDLE Handle used by the WinDriver
Event Regi ster()/

Event Unr egi st er () functions
(seethe WinDriver PCI
Low-Level API Reference)
When using the WDC API you
do not need to access this handle
directly.

pCtx PVOID Device context information.
Thisinformation isreceived

as a parameter by the

WDC xxxDevi ceOpen()
functions and stored in the device
structure for future use by the
calling application (optional)

B.4.4. PWDC_DEVICE

Pointer to aWDC_DEVI CE structure [B.4.3].

t ypedef WDC_DEVI CE * P\DC_DEVI CE

Thewdc_defs.h macros cast WDC device pointer parameters (pDev) to PADC_DEVI CE.
You may also passWDC_DEVI CE_HANDLE [B.3.1.1] variables for such parameters.

B.4.5. WDC_MEM_DIRECT ADDR Macro

Purpose

Utility macro that returns a pointer that can be used for direct access to a specified memory
address space from the context of the calling process.

Prototype

WDC_MEM DI RECT_ADDR(pAddr Desc)

© 2015 Jungo Connectivity Ltd. 241 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
pAddrDesc WDC_ADDR_DESC* Input
Description
Name Description
pAddrDesc Pointer to aWDC memory address space information structure [B.4.2]

Return Value

When called from the user mode, returns the user-mode mapping of the physical memory address
(pAddr Desc- >pUser Di r ect MemAddr);

When called from the kernel mode, returns the kernel-mode mapping of the physical memory
address (pAddr Desc- >pAddr).

The returned pointer can be used for accessing the memory directly from the user mode or kernel
mode, respectively.

B.4.6. WDC_ADDR_IS_MEM Macro

Purpose

Utility macro that checks if a given address spaceis a memory or 1/0 address space.

Prototype

WDC_ADDR | S_MEM pAddr Desc)

Parameters
Name Type I nput/Output
pAddrDesc WDC_ADDR_DESC* Input
Description
Name Description
pAddrDesc Pointer to aWDC memory address space information structure [B.4.2]

Return Value

Returns pAddr Desc- >f | sMenor y, which is set to TRUE for amemory address space and to
FALSE otherwise.

© 2015 Jungo Connectivity Ltd. 242 CONFIDENTIAL

Appendix B. API Reference

B.4.7. WDC_GET_ADDR_DESC Macro

Purpose

Utility macro that retrieves a WDC address space information structure
(WDC_ADDR_DESC[B.4.2]), which complies to the specified address space number.

Prototype
WDC_GET_ADDR_DESC(
pDev,
dwAddr Space)
Parameters
Name Type I nput/Output
pDev PWDC _DEVICE I nput
dwAddrSpace DWORD Input
Description
Name Description
pDev Pointer to aWDC device information structure [B.4.4]
dwAddrSpace Address space number

Return Value

Returns a pointer to the device's address information structure (\WWDC_ADDR _DESC [B.4.2]) for
the specified address space number — pDev- >pAddr Desc[dwAddr Space] .

B.4.8. WDC_GET_ENABLED_INT_TYPE Macro

Purpose

Utility macro for retrieving the value of aWDC device'sdwEnabl edl nt Type

WD_| NTERRUPT field. Thisfield is updated by WDC | nt Enabl e() [B.3.48] to indicate the
interrupt type enabled for the device, as detailed in the description of the macro's return value
below.

Prototype

WDC_GET_ENABLED | NT_TYPE(pDev)

© 2015 Jungo Connectivity Ltd. 243 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
pDev PWDC DEVICE I nput
Description
Name Description
pDev Pointer to a WDC device information structure [B.4.4]

Return Value

Returns the interrupt type enabled for the device:

* | NTERRUPT_MESSACE X — Extended Message-Signaled Interrupts (M SI-X)
* | NTERRUPT_MESSACGE — Message-Signaled Interrupts (MSI)

« | NTERRUPT_LEVEL_SENSI TI VE — Legacy level-sensitive interrupts

* | NTERRUPT_LATCHED — Legacy edge-triggered interrupts.
The value of thisflag is zero and it is applicable only when no other interrupt flag is set.

Remarks

» The Windows APIs do not distinguish between MS| and MSI-X; therefore, on this OS the
WinDriver functions set the | NTERRUPT_VESSAGE flag for both MSI and MSI-X.

» Cadl this macro only after calling WDC _| nt Enabl e() [B.3.48] to enable interrupts on your
PCI card.

» Thismacro isnormally relevant only in the case of PCI devices that support more than one type
of interrupt.

* You can passthe returned value to the WDC_| NT_I S_MSI macro to check if MSI or MSI-X
was enabled [B.4.10].

B.4.9. WDC_GET_INT_OPTIONS Macro

Purpose

Utility macro for retrieving the value of aWDC device's interrupt options, which indicate the
types of interrupts supported by the device, as detailed in the description of the macro's return
value below.

© 2015 Jungo Connectivity Ltd. 244 CONFIDENTIAL

Appendix B. API Reference

Prototype

WDC_GET_| NT_OPTI ONS(pDev)

Parameters
Name Type I nput/Output
pDev PWDC _DEVICE I nput
Description
Name Description
pDev Pointer to a WDC device information structure [B.4.4]

Return Value

Returns a bit-mask indicating the types of interrupts supported by the device:

| NTERRUPT _MESSAGE_X: Extended Message-Signaed Interrupts (M SI-X).

| NTERRUPT_MESSAGE: Message-Signaled Interrupts (MSI).

| NTERRUPT LEVEL_SENSI Tl VE: Legacy level-sensitive interrupts.

| NTERRUPT_LATCHED: Legacy edge-triggered interrupts.
The value of thisflag is zero and it is applicable only when no other interrupt flag is set.

Remarks
* You can pass the returned optionsto the WDC | NT_| S_MSI macro to check whether they

include the | NTERRUPT _MESSACE (MSI) and/or | NTERRUPT_MESSACGE_X (MSI-X)
flags[B.4.10].

B.4.10. WDC_INT_IS_MSI Macro

Purpose

Utility macro that checks whether a given interrupt type bit-mask contains the Message-Signaled
Interrupts (MSI) or Extended Message-Signaled Interrupts (M SI-X) interrupt type flags.

Prototype

WDC_| NT_I S_MSI (dwi nt Type)

© 2015 Jungo Connectivity Ltd. 245 CONFIDENTIAL

Appendix B. API Reference

Parameters
Name Type I nput/Output
dwintType DWORD Input
Description
Name Description
dwintType Interrupt types bit-mask

Return Value

Returns TRUE if the provided interrupt type bit-mask includes the | NTERRUPT_MESSACE
(MSI) and/or I NTERRUPT_MESSAGE_ X (M SI-X) flags; otherwise returns FALSE.

B.4.11. WDC_GET ENABLED INT LAST MSG

Macro

Purpose

Utility macro that retrieves the message data of the last received interrupt for the Message-
Signaled Interrupts (M SI) / Extended Message-Signaled Interrupts (M SI-X) enabled for the
device (on Linux and Windows Vista and higher).

Prototype

WDC_GET_ENABLED | NT_LAST_MSG pDev)

Parameters
Name Type I nput/Output
pDev PWDC_DEVICE Input
Description
Name Description
pDev Pointer to a WDC device information structure [B.4.4]

Return Value

If MSI or MSI-X was enabled for the given device, the macro returns the message data of the last
message received for the device's interrupt; otherwise returns zero.

© 2015 Jungo Connectivity Ltd.

246

CONFIDENTIAL

Appendix B. API Reference

B.4.12. WDC_IS_KP Macro

Purpose

Utility macro that checks whether a WDC device uses a Kernel Plugin driver.

Prototype

WDC | S_KP(pDev)

Parameters
Name Type I nput/Output
pDev PWDC_DEVICE Input
Description
Name Description
pDev Pointer to a WDC device information structure [B.4.4]

Return Value

Returns TRUE if the device uses a Kernel Pluglin driver; otherwise returns FALSE.

B.5. WD _xxx Structures, Types and General
Definitions

This section describes basic WD_xxx structures and types, which are used by the WDC_xxx APIs.
The APIs described in this section are defined in the WinDriver/include/windrvr.h header file.

B.5.1. WD _BUS TYPE Enumeration

Bus types enumeration.

Enum Value Description

WD_BUS USB Universal Serial Bus (USB)
WD_BUS UNKNOWN Unknown bus

WD_BUS ISA ISA bus

WD _BUS EISA EISA (ISA Plug-and-Play) bus
WD_BUS PCI PCI bus

WD_BUS PCMCIA PCMCIA bus

© 2015 Jungo Connectivity Ltd. 247 CONFIDENTIAL

Appendix B. API Reference

B.5.2. ITEM_TYPE Enumeration

Enumeration of card item types.

Enum Value Description
ITEM_NONE Unknown item type
ITEM_INTERRUPT Interrupt item
ITEM_MEMORY Memory item
ITEM_IO [/O item
ITEM_BUS Busitem

B.5.3. WD _PCMCIA_ACC_SPEED Enumeration

Enumeration of PCMCIA bus-access speeds.

Enum Value

Description

WD_PCMCIA_ACC_SPEED_DEFAULT Use the default PCM CIA bus access speed

WD_PCMCIA_ACC_SPEED 250NS 250 ns
WD_PCMCIA_ACC_SPEED_200NS 200 ns
WD_PCMCIA_ACC_SPEED 150NS 150 ns
WD_PCMCIA_ACC_SPEED_1000NS 100 ns

B.5.4. WD_PCMCIA_ACC_WIDTH Enumeration

Enumeration of PCMCIA bus width.

Enum Value

Description

WD_PCMCIA_ACC WIDTH_DEFAULT | Usethe default PCMCIA buswidth

WD_PCMCIA_ACC_WIDTH_8BIT

8-bit

WD_PCMCIA_ACC_WIDTH_16BIT 16-bit

B.5.5. WD_PCMCIA_VPP Enumeration

Enumeration of the PCMCIA controller's VVoltage Power Pin (Vpp) power levels.

Enum Value

Description

WD_PCMCIA_VPP_DEFAULT

Use the default power level of the PCMCIA Vpp pin

WD_PCMCIA_VPP_OFF

Set the voltage on the Vpp pin to zero (disable)

WD_PCMCIA_VPP_ON

Set the voltage on the Vpp pin to 12V (enable)

WD_PCMCIA_VPP_AS VSS

Set the voltage on the Vpp pin to equal that of the Vcc pin

© 2015 Jungo Connectivity Ltd.

248 CONFIDENTIAL

Appendix B. API Reference

B.5.6. WD_PCI _ID Structure

PCI device identification information structure.

Field Type Description
dwVendorld DWORD Vendor ID
dwDeviceld DWORD Device |ID

B.5.7. WD_PCMCIA_ID Structure

PCMCIA device identi

fication information structure.

Field Type Description
wManufacturerld WORD Manufacturer ID

wCardld WORD DevicelD

B.5.8. WD_PCI _SLOT Structure

PCI device location information structure.
Field Type Description
dwBus DWORD PCI Bus number (0 based)
dwSlot DWORD Slot number (0 based)
dwFunction DWORD Function number (0 based)

B.5.9. WD PCMCIA_SLOT Structure

PCMCIA device location information structure.

Field Type Description

uBus BYTE PCMCIA Bus number (0 based)
uSocket BYTE Socket number (0 based)
uFunction BYTE Function number (O based)
B.5.10. WD_PCI_CAP Structure
PCI capability information structure.

Field Type Description

dwCapld DWORD PCI capability ID

dwCapOffset DWORD PCI capability register offset

© 2015 Jungo Connectivity Ltd.

249

CONFIDENTIAL

Appendix B. API Reference

B.5.11. WD_ITEMS Structure

Card resources information structure.

Field Type Description

item DWORD Item type — seethe| TEM TYPE
enumeration [B.5.2].

Thisfield is updated by the
WDC_XXXCGet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnrti aGet Car dI nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

fNotSharable DWORD * 1 — Non-sharable resource; should be
locked for exclusive use
¢ O — Sharable resource

Thisfield is updated by the

WDC xxxCet Devi cel nf o() functions
(PCI [B.3.10] / PCMCIA [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and

WD Pcnrti aGet Car dl nf o() functions, and
can be modified manually before registering the
resources using the WDC _xxxDevi ceQpen()
functions (PCI [B.3.12] / PCMCIA [B.3.13]

/ 1SA [B.3.14]) or the low-level

WD _Car dRegi st er () function; (the
low-level functions are documented in the
WinDriver PCI Low-Level API Reference).

© 2015 Jungo Connectivity Ltd. 250 CONFIDENTIAL

Appendix B. API Reference

Field

Type

Description

union

Union of resources data, based on the item's
type(item

e Mem

Struct

Memory-item descriptor
(i t em=l TEM_MEMORY)

* pPhysicalAddr

PHYS ADDR

First address of the physical memory range.
For Plug-and-Play hardware

(PCI/PCMCIA) thisfield is updated by the
WDC_XXXCet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and

WD Pcnti aGet Car dlI nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

NOTE: For PCI, in the case of a 64-bit memory
BAR the value set in this field by may be
incorrect, due to the 32-bit field size. For this
reason, WDC_Pci Devi ceOpen() [B.3.12]
ignores thisfield and retrieves the physical
address directly from the card (as does the low-
level WD_Car dRegi st er () function).

* gwBytes

UINT64

Length (in bytes) of the memory range.
Thisfield is updated by the
WDC_XXXCet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD_Pci Get Car dI nf o() and
WD _Pcnti aGet Car dI nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

* pTransAddr

KPTR

K ernel-mode mapping of the memory range's
physical base address.

Thisfield is updated by

WD _Car dRegi st er () (seethe WinDriver
PCI Low-Level APl Reference), whichis
called from the WDC_xxxDevi ceQpen()
functions (PCI [B.3.12] / PCMCIA [B.3.13] /
ISA [B.3.14]).

* pUserDirectAddr

UPTR

User-mode mapping of the memory range's
physical base address.

Thisfield is updated by

WD_Car dRegi st er () (seethe WinDriver
PCI Low-Level API Reference), whichis
caled from the WDC_xxxDevi ceOpen()
functions (PCI [B.3.12] / PCMCIA [B.3.13] /
ISA [B.3.14]).

© 2015 Jungo Connectivity Ltd.

251

CONFIDENTIAL

Appendix B. API Reference

Field

Type

Description

* dwBar

DWORD

Base Address Register (BAR) number.
Thisfield is updated by the
WDC_XXXCGet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnrti aGet Car dI nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

* pReserved

KPTR

Reserved for internal use

* dwOptions

DWORD

A bit-mask of memory-item registration

flags, applicable when calling one of the

WDC xxxDevi ceOpen() functions

(PCI [B.3.12] / PCMCIA [B.3.13]

/ 1SA [B.3.14]) or the low-level

WD _Car dRegi st er () function (see the

WinDriver PCI Low-Level API Reference)

— acombination of any of the of the following

WD | TEM MEM OPTI ONS enumeration

values:

« WD | TEM_MEM DO _NOT_MAP_KERNEL :
Avoid mapping the item's physical
memory to the kernel address space
(1. Mem pTransAddr not set); map
the memory only to the user-mode
virtual address space (mapped base
address. | . Mem pUser Di r ect Addr).
For more information, refer to
Remark 2 in the documentation of
WDC Pci Devi ceOpen() [B.3.12]; (a
similar remark is found in the documentation
of the other device-open functions).

NOTE: Thisflag is applicable only to
memory items.

« WD | TEM MEM ALLOW CACHE
(Windows and Windows CE): Map the
item's physical memory (base address:
| . Mem pPhysi cal Addr) as cached.
NOTE: Thisflag is applicable only to
memory items that pertain to the host's RAM,
as opposed to local memory on the card.

© 2015 Jungo Connectivity Ltd.

252 CONFIDENTIAL

Appendix B. API Reference

Field Type Description

« WD_| TEM_MEM CE_MAP_VI RTUAL
(Windows CE) — Perform the kernel
mapping of the physical memory (mapped
base address: | . Mem pTr ansAddr)
to non-static virtual system addresses, as
opposed to the default static kernel address
mapping.
NOTE: Do not set thisflag for items that
need to be accessed in kernel mode —
namely, items that will be used to create
interrupt transfer commands or items that
will be accessed from aKernel Plugin driver.
NOTE: Thisflag is applicable only to
memory items.

3[e) struct [/O-item descriptor (i t em=l TEM | O

* pAddr KPTR First address of the I/O range.

Thisfield is updated by the

WDC_ XXXCet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnti aGet Car dl nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

* dwBytes DWORD Length (in bytes) of the I/O range.
Thisfield is updated by the
WDC_XXXCet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnti aGet Car dl nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

* dwBar DWORD Base Address Register (BAR) number.
Thisfield is updated by the
WDC_XXXCet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnti aGet Car dl nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

e Int struct I nterrupt-item descriptor
(i t emel TEM_ | NTERRUPT)

© 2015 Jungo Connectivity Ltd. 253 CONFIDENTIAL

Appendix B. API Reference

Field

Type

Description

* dwlnterrupt

DWORD

Physical interrupt request (IRQ) number.
Thisfield is updated by the
WDC_XXXCGet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnrti aGet Car dI nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

* dwOptions

DWORD

Interrupt bit-mask, which can consist of a
combination of any of the following flags:
Interrupt typeflags:

* | NTERRUPT_MESSAGE_X — Indicates
that the hardware supports Extended Message-
Signaled Interrupts (M SI-X).

This option is applicable only to PCI cards on
Linux — seeinformationin Section 9.2.4.

* | NTERRUPT_MESSAGE — On Linux,
indicates that the hardware supports Message-
Signaled Interrupts (MSI).

On Windows, indicates that the hardware
supports MSI or MSI-X.

This option is applicable only to PCI cards on
Linux and Windows Vista and higher — see
information in Section 9.2.4.

* | NTERRUPT_LEVEL_SENSI Tl VE —
Indicates that the hardware supports level-
sensitive interrupts.

* | NTERRUPT_LATCHED — indicates that
the device supports legacy edge-triggered
interrupts. The value of thisflag is zero,
therefore it is applicable only when no other
interrupt flag is set.

NOTE:

For Plug-and-Play hardware

(PCI/PCMCIA), use WinDriver's

WDC Pci Get Devi cel nf o() [B.3.10] (PCI)
or WOC_Pcnti aGet Devi cel nf o() [B.3.11]
(PCMCIA) function (or the low-level

WD Pci Get Car dl nf o() or

WD Pcnrti aGet Car dI nf o() function)

to retrieve the Plug-and-Play hardware
information, including the supported interrupt

types.

© 2015 Jungo Connectivity Ltd.

254 CONFIDENTIAL

Appendix B. API Reference

Field

Type

Description

For non-Plug-and-Play hardware, the

relevant interrupt type flag (normally —

| NTERRUPT _LATCHED) should be set by the
user inthe call to WDC_| saDevi ceQOpen()
or to the low-level WD_Car dRegi st er ()
function. Miscellaneous interrupt options:

« | NTERRUPT_CE_| NT_| D— On Windows
CE (unlike other operating systems), there
isan abstraction of the physical interrupt
number to alogical one. Setting thisflag
within the resources information passed

to the relevant WDC_xxxDevi ceQpen()
function will instruct WinDriver to refer to the
dwi nt er r upt vaueasalogical interrupt
number and convert it to a physical interrupt
number.

* hinterrupt

DWORD

Handle to an internal WinDriver interrupt
structure, required by the low-level WD_xxx ()
WinDriver interrupt APIs (see the WinDriver
PCI Low-Level API Reference).

Thisfield is updated by

WD_Car dRegi st er () (seethe WinDriver
PCI Low-Level API Reference), whichis
called from the WDC_xxxDevi ceOpen()
functions (PCI [B.3.12] / PCMCIA [B.3.13] /
ISA [B.3.14]).

* dwReservedl

DWORD

Reserved for internal use

* pReserved?2

KPTR

Reserved for internal use

* Bus

WD _BUS

Bus-item descriptor (i t em=l TEM _BUS)

* dwBusType

WD_BUS TYPE

Device's bus type — seethe WD _BUS TYPE
enumeration [B.5.1]

* dwBusNum

DWORD

Bus Number

© 2015 Jungo Connectivity Ltd.

255 CONFIDENTIAL

Appendix B. API Reference

Field Type Description

* dwSlotFunc DWORD Slot/socket and function information for

the device: The lower three bits represent

the function number and the remaining bits
represent the slot/socket number. For example:
avalue of 0x80 (<=> 10000000 binary)
corresponds to a function number of 0 (lower
3 bits: 000) and a slot/socket number of 0x10
(remaining bits: 10000).

Thisfield is updated by the

WDC_XXXCGet Devi cel nf o() functions
(PCI: [B.3.10]; PCMCIA: [B.3.11]) or the
low-level WD _Pci Get Car dI nf o() and
WD Pcnrti aGet Car dl nf o() functions
(seethe WinDriver PCI Low-Level API
Reference).

B.5.12. WD _CARD Structure

Card information structure.

Field Type Description

dwltems | DWORD Number of items (resources) on the card

Item WD_ITEMS Array of card resources (items) information
[WD_CARD_ITEMS] | structures[B.5.11]

B.5.13. WD_PCI_CARD_INFO Structure

PCI card information structure.

Field Type Description

pciSlot WD_PCI_SLOT PCI device location information structure [B.5.8],
which can be acquired by calling

WDC Pci ScanDevi ces() [B.3.4] (or the low-level

WD Pci ScanCar ds() function — see the WinDriver
PCIl Low-Level APl Reference)

Card WD_CARD Card information structure [B.5.12]

© 2015 Jungo Connectivity Ltd. 256 CONFIDENTIAL

Appendix B. API Reference

B.5.14. WD_PCMCIA_CARD_INFO Structure

PCMCIA card information structure.

Field Type Description
pcmciaSlot WD_PCMCIA_SLOT PCMCIA device location
information structure [B.5.9],
which can be acquired by calling
WDC Pcnti aScanDevi ces|()
[B.3.7] (or the low-level
WD Pcnci aScanCar ds()
function — see the WinDriver PCI
Low-Level API Reference)
Card WD_CARD Card information structure [B.5.12]
cVersion CHAR Version string
[WD_PCMCIA_VERSION_LEN]
cManufacturer CHAR[WD_PCMCIA _ Manufacturer string
MANUFACTURER_LEN]
cProductName CHAR[WD_PCMCIA _ Product string
PRODUCTNAME_LEN]
wManufacturerld WORD Manufacturer ID
wCardld WORD DevicelD
wFuncld WORD Function ID

© 2015 Jungo Connectivity Ltd.

257

CONFIDENTIAL

Appendix B. API Reference

B.5.15. WD_DMA Structure

Direct Memory Access (DMA) information structure.

Field

Type

Description

hDma

DWORD

DMA buffer handle (or O for afailed
allocation). This handle is returned from

WDC DMACont i gBuf Lock() [B.3.41] and
WDC DIVASGBuUf Lock() [B.3.42] (or from the
low-level WO_DMALock () function — see the
WinDriver PCI Low-Level API Reference)

pUserAddr

PVOID

User-mode mapped address of the DMA
buffer. This mapping is returned from

WDC DMACont i gBuf Lock() [B.3.41] and
WDC DIVASGBuUf Lock() [B.3.42] (in this
function the pBuf user-mode buffer provided
by the caller is used), or from the low-level
WD DMALock() function (see the WinDriver
PCIl Low-Level APl Reference). Note: if the
DVA KERNEL _ONLY flag was set in the DMA
options bit-mask field (dwQOpt i ons), this
field is not updated.

pKernel Addr

KPTR

K ernel-mode mapped address of the DMA
buffer. This mapping is returned from
WDC _DMVACont i gBuf Lock() [B.3.41]
and WbC_DIVASGBuf Lock() [B.3.42]
(on Windows), or from the low-level

WD DMALock() function (for contiguous-
buffer DMA and for Scatter/Gather DMA
on Windows — see the WinDriver PCI
Low-Level API Reference)

dwBytes

DWORD

The size of the DMA buffer (in bytes)

dwOptions

DWORD

DMA options bit-mask, which can consist of a
combination of any of the enumeration values
listed below.

NOTE: Options that are also applicable

to the WDC_DIVASGBuf Lock() and
WDC_DMACont i gBuf Lock() functions
(according to the descriptions below) should
be set within these functions dwQOpt | ons
parameter. The dwOpt i ons field of the

WD _DMA structure returned by these functions
will be updated accordingly.

DMA flags:

© 2015 Jungo Connectivity Ltd.

258 CONFIDENTIAL

Appendix B. API Reference

Field Type Description

 DMA_FROM DEVI CE: Synchronize the
DMA buffer for transfers from the deviceto
memory.

« DMA_TO _DEVI CE: Synchronize the DMA
buffer for transfers from memory to the device.
* DMA TO_FROM DEVI CE: Synchronize
the DMA buffer for transfers in both
directions— i.e., from the device

to memory and from memory to the

device (<=>DVA_FROM DEVI CE |
DVA TO DEVI CE).

« DVA_KERNEL_BUFFER _ALLQC: Allocate
acontiguous DMA buffer in the physical
memory.

The default behavior (when thisflag is not set)
isto allocate a Scatter/Gather DMA buffer.
Set this flag when calling the low-level

WD _DMALock() function to allocate a
contiguous DMA buffer (see the WinDriver
PCI Low-Level API Reference).

When using the WDC APIs there

is no need to set thisflag, since
WDC_DMACont i gBuf Lock() [B.3.41]

sets it automatically, and

WDC_DMASGBuf Lock() [B.3.42] is used

to allocate Scatter/Gather DMA buffers, for
which thisflag is not applicable.

« DVA_KBUF_BELOW 16M Allocate the
physical DMA buffer within the first 16MB of
the main memory.

Thisflag is applicable only to contiguous-
buffer DMA —i.e., when calling
WDC_DMACont i gBuf Lock() [B.3.41] or
when calling the low-level WD_DNVALock()
flag with the DMA_KERNEL_BUFFER_ALLOC
flag (seethe WinDriver PCI Low-Level API
Reference).

© 2015 Jungo Connectivity Ltd. 259 CONFIDENTIAL

Appendix B. API Reference

Field Type Description

* DMA LARGE BUFFER: Enablelocking of a
large DMA buffer — dwByt es > 1MB.
Thisflag is applicable only to Scatter/Gather
DMA.

Set this flag when calling the low-level

WD _DMALock() function to allocate a

large DMA buffer (seethe WinDriver PCI
Low-Level API Reference).

When using the WDC APIs there

is no need to set thisflag, since
WDC_DMASGBuf Lock() [B.3.42]

sets it automatically when called to

alocate alarge DMA buffer, and
WDC_DMACont i gBuf Lock() [B.3.41] is
used to alocate contiguous DMA buffers, for
which thisflag is not applicable.

* DMA_ALLOW CACHE: Allow caching of the
DMA buffer.

« DMVA_KERNEL_ONLY_MAP: Do not map the
allocated DMA buffer to the user mode (i.e.,
map it to kernel-mode only).

Thisflag is applicable only in cases where
the DMA_KERNEL_BUFFER_ALLCCflagis
applicable — see above.

« DVA_ALLOW 64BI T_ADDRESS: Allow
allocation of 64-bit DMA addresses. Thisflag
is supported on Windows and Linux.

dwPages DWORD Number of physical memory blocks used for
the allocated buffer.

For contiguous-buffer DMA thisfield is always
setto 1.

hCard DWORD Low-level WinDriver card handle, whichis
acquired by WDC xxxDevi ceOpen() (by
callingWD_Car dRegi st er () — seethe
WinDriver PCI Low-Level APl Reference)
and stored in the WDC device structure

Page WD _DMA_PAGE Array of physical memory pages information
[WD_DMA _PAGES| | structures.

For contiguous buffer DMA this array always
holds only one element (see dwPages).

* pPhysicalAddr KPTR The page's physical address
 dwBytes DWORD The page's size (in bytes)

© 2015 Jungo Connectivity Ltd. 260 CONFIDENTIAL

Appendix B. API Reference

B.5.16. WD_TRANSFER Structure

Memory/l1O read/write transfer command information structure.

Field Type Description

cmdTrans | DWORD | A vaueindicating the type of transfer to perform — refer to the
definition of the WD_TRANSFER _CNMD enumeration in windrvr .h.

The transfer command can be of either of the following types:

* A read/write transfer command that conforms to the following
format: <di r ><p>_[§] <si ze>

Explanation:

<di r >: Rfor read, Wfor write

<p>: P for 1/0O, Mfor memory

<S>: gsignifies a string (block) transfer, as opposed to a single transfer
<si ze>: BYTE, WORD, DWORD or QWORD

« CMD_MASK: This command is applicable when passing

interrupt transfer commands to the interrupt enable

functions (WDC _I nt Enabl e() [B.3.48] or the low-level

I nt er rupt Enabl e() or WD_I nt Enabl e() functions — seethe
WinDriver PCI Low-Level API Reference).

CVD_MASK is an interrupt mask command for determining the
source of the interrupt: When this command is set, upon the arrival
of an interrupt in the kernel WinDriver masks the value of the
previous read command in the WD TRANSFER commands array
with the mask that is set in the relevant Dat a field union member

of the mask transfer command. For example, for apTr ansCrds
WD TRANSFER array, if pTransCds|[i - 1] . cndTr ans

isRM _BYTE, WinDriver performs the following

mask: pTransCnds|[i - 1] . Data. Byte &

pTransCnds[i] . Dat a. Byt e. If the mask is successful, the
driver claims ownership of the interrupt and when the control is
returned to the user mode, the interrupt handler routine that was
passed to the interrupt enable function isinvoked; otherwise, the
driver rejects ownership of the interrupt, the interrupt handler routine
is not invoked and the subsequent transfer commands in the array are
not executed.

(Acceptance and rejection of the interrupt is relevant only when
handling legacy interrupts; since MSI/MSI-X interrupts are not
shared, WinDriver will always accept control of such interrupts.)
NOTE: A CVD_MASK command must be preceded by aread transfer
command (RM_XXX/ RP_XXX).

© 2015 Jungo Connectivity Ltd. 261 CONFIDENTIAL

Appendix B. API Reference

Field Type Description

pPort KPTR The 1/0 port address or the kernel-mapped virtua memory address,
which has been stored in the relevant device (WDC_DEVI CE [B.4.3]):
dev. pAddr Desc|[i]. pAddr (whereiistheindex of the desired
address space). (When using the low-level WD_xxx () APIs, these
values are stored within the pAddr (1/0) and pTr ansAddr
(memory) fields of therelevant car dReg. Card. Itenfi] item—
seethe WinDriver PCl Low-Level APl Reference).

dwBytes DWORD | The number of bytesto transfer

fAutoinc DWORD | Relevant only for string (block) transfers:

If TRUE, the I/O or memory port/address will be incremented after
each block that is transferred;

If FALSE, all datais transferred to/from the same port/address.

dwOptions | DWORD | Must be zero

Data union The data buffer for the transfer (input for write commands, output for
read commands):
* Byte BYTE Used for 8-hit transfers

* Word WORD Used for 16-bit transfers
* Dword UINT32 | Used for 32-bit transfers
» Qword UINT64 | Used for 64-bit transfers

* pBuffer PVOID Used for string (block) transfers — a pointer to the data buffer for the
transfer

B.6. Kernel Plugln Kernel-Mode Functions

The following functions are callback functions which are implemented in your Kernel Plugin
driver, and which will be called when their calling event occurs. For example: KP_I ni t [B.6.1]
isthe callback function that is called when the driver isloaded. Any code that you want to execute
upon loading should be in this function.

KP_I ni t [B.6.1] setsthe name of the driver and the KP_Qpen [B.6.2] function(s).

KP_QOpen [B.6.2] setstherest of the driver's callback functions.

For example:
kpOpenCal | - >f uncCl ose = KP_C ose;
kpOpenCal | ->funcCall = KP_Cal | ;

kpOpenCal | - >f uncl nt Enabl e = KP_I nt Enabl e;
kpOpenCal | - >f uncl nt Di sabl e = KP_I nt Di sabl e;
kpOpenCal | ->funclntAtlrgl = KP_IntAtlrql;
kpOpenCal | - >f uncl nt At Dpc = KP_I nt At Dpc;
kpOpenCal | ->funclintAtlrgl MSI = KP_IntAtlrqgl MsI;
kpOpenCal | - >f uncl nt At DpcMSI = KP_I nt At DpcMSI ;
kpOpenCal | - >f uncEvent = KP_Event;

© 2015 Jungo Connectivity Ltd. 262 CONFIDENTIAL

Appendix B. API Reference

Asexplained in Section 11.6.2.1, it is the convention of this reference guide to mark

the Kernel Plugin callback functionsas KP_<f uncti onal i t y>—e.g., KP_QOpen.
However, you are free to select any name that you wish for your Kernel Plugln callback
functions, apart from KP_I ni t . The generated DriverWizard Kernel Plugin code, for
example, uses the selected driver name in the callback function names (e.g., for a<MyKP>
driver it creates callbacks named KP_My/KP_COpen, KP_M/KP_Cal | , etc.).

B.6.1. KP_Init

Purpose

Kernel Pluglin initialization function.

Thisfunction is called when the Kernel Plugin driver isloaded.

The function sets the name of the Kernel Plugin driver and the KP_COpen callback
function(s) [B.6.2].

Prototype

BOOL _ cdecl KP_Init(KP_INIT *kplnit);

Parameters
Name Type I nput/Output
kplnit KP_INIT* Output
Description
Name Description
kplnit Pointer to a pre-allocated Kernel Pluglin initialization information
structure [B.7.4], whose fields should be updated by the function

Return Value

TRUE if successful. Otherwise FALSE.

Remarks

Y ou must define the KP_I ni t function in your code in order to link the Kernel Plugin driver
to WinDriver. KP_I ni t iscaled when the driver isloaded. Any code that you want to execute
upon loading should bein this function.

© 2015 Jungo Connectivity Ltd. 263 CONFIDENTIAL

Appendix B. API Reference

Example

BOOL _ cdecl KP_Init(KP_INT *kplnit)
{
[* Check if the version of the WnbDriver Kernel
Plugln library is the same version
as windrvr.h and wd_kp. h */
if (kplnit->dwerW != WD VER)

{
/* You need to reconpile your Kernel Plugln
with the conpatible version of the WnbDriver
Kernel Plugln library, windrvr.h and wd_kp.h */
return FALSE;
}

kpl ni t->funcOpen = KP_QOpen;
kpl nit->funcOpen_32_64 = KP_PCl VI RT_Open_32_64;
strcpy (kplnit->cDriverNane, "KPDriver"); /* Up to 12 chars */

return TRUE;
}

B.6.2. KP_Open

Purpose

Kernel Plugln open function.

This function sets the rest of the Kernel Plugin callback functions (KP_Cal | [B.6.4],

KP_I nt Enabl e [B.6.6], etc.) and performs any other desired initialization (such as allocating
memory for the driver context and filling it with data passed from the user mode).

The returned driver context (* ppDr vCont ext) will be passed to rest of the Kernel Plugin
callback functions.

The KP_Open callback is called when the WD_Ker nel Pl ugl nQpen() function (see the
WinDriver PCI Low-Level API Reference) is called from the user mode — either directly
(when using the low-level WinDriver API [B.2]), or viaacall to a high-level WDC function.
WD _Ker nel Pl ugl nOpen() iscaled from the WDC_Ker nel Pl ugl nOpen() [B.3.19],
and from the WDC_xxxDevi ceQpen() functions (PCI [B.3.12] / PCMCIA [B.3.13] /

|SA [B.3.14]) when they are called with the name of avalid Kernel Plugln driver (set in the
pcKPDr i ver Name parameter).

The WDC_xxxDevi ceQpen() functions cannot be used to open a handle to a
64-bit Kernel Plugln function from a 32-bit application. For this purpose, use
WDC_Ker nel Pl ugl nOpen() (or the low-level WD_Ker nel Pl ugl nQpen() function).

© 2015 Jungo Connectivity Ltd. 264 CONFIDENTIAL

Appendix B. API Reference

The Kernel Plugin driver can implement two types of KP_Open callback functions —

* A "standard" Kernel Plugln open function, which is used whenever a user-mode application
opens a handle to aKernel Plugln driver, except when a 32-bit applications opens a handle to a

64-bit driver.

This callback functionis set inthef uncQpen field of the KP_I NI T structure [B.7.4] that is
passed as a parameter toKP_I ni t [B.6.1].

A function that will be used when a 32-bit user-mode application opens a handle to a 64-bit

Kernel Plugln driver.

This callback functionisset inthef uncQpen_32_ 64 field of the KP_I NI T structure [B.7.4]

that is passed as a parameter to KP_I ni t [B.6.1].

A Kernel Plugin driver can provide either one or both of these KP_Open callbacks, depending on
the target configuration(s).

The KP_PCI sample (WinDriver/samples/pci_diag/kp_pci/kp_pci.c)

implements both types of KP_Qpen calbacks— KP_PCl _Open() (standard) and
KP_PCl _Open_32_ 64() (for opening a handle to a 64-bit Kernel Plugin from a 32-bit

application).

The generated DriverWizard Kernel Plugln code always implements a standard Kernel
Plugln open function — KP_XXX_Open(). When selecting the 32-bit application for a
64-bit Kernel Plugln DriverWizard code-generation option (see Figure 4.10), the wizard
also implementsa KP_XXX_ Open_32_64() function, for opening a handle to a 64-bit

Kernel Plugin driver from a 32-bit application.

Prototype

BOOL _ cdecl KP_Open(

KP_OPEN_CALL *kpOpencCal |,

HANDLE hWD,

PVO D pOpenDat a,

PVO D *ppDrvCont ext) ;

Parameters
Name Type I nput/Output
kpOpenCall KP_OPEN_CALL Input
hwD HANDLE Input
pOpenData PVOID I nput
ppDrvContext PVOID* Output

© 2015 Jungo Connectivity Ltd.

265

CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
kpOpenCall Structure to fill in the addresses of the KP_xxx callback
functions [B.7.5]
hwD The WinDriver handle that WD_Ker nel Pl ugl nOpen() was called
with
pOpenData Pointer to data passed from user mode
ppDrvContext Pointer to driver context data with which the KP_Cl ose [B.6.3],

KP_Cal | [B.6.4], KP_I nt Enabl e [B.6.6] and KP_Event [B.6.5]
functions will be called. Use this to keep driver-specific information
that will be shared among these callbacks.

Return Value

TRUE if successful. If FALSE, the call to WD_Ker nel Pl ugl nOQpen() from the user mode will

fail.

Example

BOOL _ cdecl KP_Open(KP_OPEN _CALL *kpQOpenCall,

PVA D pOpenData, PVA D *ppDr vCont ext)

{
kpOpencCal | -

kpOpencCal | -
kpOpencCal | -
kpOpencCal | -
kpOpencCal | -
kpOpencCal | -
kpOpencCal | -
kpOpencCal | -
kpOpencCal | -

/* You can

>funcC ose = KP_d ose;

>funcCall = KP_Cal|;

>f uncl nt Enabl e = KP_I nt Enabl e;
>funcl nt Di sabl e = KP_I nt Di sabl e;
>funclntAtlrgl = KP_IntAtlrgl;
>f uncl nt At Dpc = KP_I nt At Dpc;

>funclntAtlrqgl MSI = KP_IntAtlrqgl Ml ;

>f uncl nt At DpcMslI = KP_I nt At DpcMSI ;
>funcEvent = KP_Event;

al l ocate driver context nmenory here:

*ppDrvCont ext = mal | oc(si zeof (MYDRV_STRUCT)) ;
return *ppDrvCont ext! =NULL;

HANDLE hWD,

*/

© 2015 Jungo Connectivity Ltd. 266

CONFIDENTIAL

Appendix B. API Reference

B.6.3. KP_Close

Purpose

Caled when WD_Ker nel Pl ugl nCl ose() (seethe WinDriver PCI Low-Level API
Reference) is called from user mode.

The high-level WDC_xxxDevi ceC ose() functions (PCI [B.3.15] / PCMCIA [B.3.16] /

ISA [B.3.17]) automatically call WD_Ker nel Pl ugl nCl ose() for devices that contain an open
Kernel Plugln handle (see Section 12.4).

This functions can be used to perform any required clean-up for the Kernel Plugin (such as
freeing memory previously allocated for the driver context, etc.).

Prototype
void _ cdecl KP_C ose(PVA D pDrvCont ext);

KP_FUNC_CLOSE Kernel Plugln callback function type.

Parameters
Name Type I nput/Output
pDrvContext PVOID I nput
Description
Name Description
pDrvContext Driver context datathat was set by KP_Open [B.6.2]

Return Value

None

Example

void _ cdecl KP_C ose(PVO D pDrvCont ext)

{
i f (pDrvContext)

free(pDrvContext); /* Free allocated driver context nenmory */

© 2015 Jungo Connectivity Ltd. 267 CONFIDENTIAL

Appendix B. API Reference

B.6.4. KP_Call

Purpose

Called when the user-mode application callsWDC_Cal | Ker Pl ug() [B.3.20] (or the low-level
WD _Ker nel Pl ugl nCal | () function — seethe WinDriver PCI Low-Level API Reference).

This function is amessage handler for your utility functions.

Prototype

void _ cdecl KP_Call(
PVA D pDrvCont ext,
WD KERNEL_PLUG N_CALL
*kpCal I,
BOCOL f I sKernel Mode) ;

KP_FUNC_CALL Kernel Pluglin callback function type.

Parameters
Name Type I nput/Output
pDrvContext PVOID I nput/Output
kpCall WD_KERNEL_PLUGIN_CALL
» dwMessage DWORD Input
 pData PVOID I nput/Output
* dwResult DWORD Output
flsKkernelMode BOOL Input
Description
Name Description
pDrvContext Driver context data that was set by KP_Open [B.6.2] and will also

be passed to KP_Cl ose [B.6.3], KP_I nt Enabl e [B.6.6] and
KP_Event [B.6.5]

kpCall Structure with user-mode information received from the

WDC_Cal | Ker Pl ug() [B.3.20] (or from the low-level

WD_Ker nel Pl ugl nCal | () function — see the WinDriver PCI
Low-Level API Reference) and/or with information to return back to
the user mode [B.7.3]

flsKkernelMode This parameter is passed by the WinDriver kernel — see the
fIsKernel M ode remark, below.

© 2015 Jungo Connectivity Ltd. 268 CONFIDENTIAL

Appendix B. API Reference

Return Value

None

Remarks

» Caling WDC_Cal | Ker Pl ug() [B.3.20] (or the low-level WD_Ker nel Pl ugl nCal | ()
function — seethe WinDriver PCI Low-L evel API Reference) in the user mode will call
your KP_Cal | [B.6.4] calback function in the kernel mode. The KP_Cal | functionin the
Kernel Plugin will determine which routine to execute according to the message passed to it.

e Thef | sKer nel Mbde parameter is passed by the WinDriver kernel to the KP_Cal |
routine. The user is not required to do anything about this parameter. However, notice how
this parameter is passed in the sample code to the macro COPY_TO USER OR_KERNEL —
Thisisrequired for the macro to function correctly. Please refer to Section B.6.12 for more
details regarding the COPY_TO_USER_OR_KERNEL and COPY_FROM USER_OR_KERNEL

macros.

Example

void _ cdecl KP_Call (PVA D pDrvContext,
WD KERNEL_PLUG N CALL *kpCall, BOOL flsKernel Mode)
{
kpCal | - >dwResult = MY_DRV_CX;
switch (kpCall - >dwMvessage)
{
/* In this sanple we inplenment a GetVersion nessage */
case My_DRV_MSG VERSI ON:

{
DWORD dwVer = 100;

MY_DRV_VERSI ON *ver = (M_DRV_VERSI ON *)kpCal | - >pDat a;

COPY_TO USER_OR KERNEL(&ver - >dwVer, &dwVer,
si zeof (DWORD), f I sKernel Mode);

COPY_TO USER _OR KERNEL(ver->cVer, "My Driver V1.00",
si zeof ("My Driver V1.00")+1, flsKernel Mode);

kpCal | - >dwResult = MY_DRV_CX;
}
br eak;
/* You can inplenent other nessages here */
defaul t:
kpCal | - >dwResul t = MY_DRV_NO | MPL_MESSAGE;

© 2015 Jungo Connectivity Ltd. 269

CONFIDENTIAL

Appendix B. API Reference

B.6.5. KP_Event

Purpose

Called when a Plug-and-Play or power management event for the device is received, provided the
user-mode application first called WDC_Event Regi st er () [B.3.51] withf UseKP = TRUE
(or the low-level Event Regi st er () function with a Kernel Plugln handle — see WinDriver
PCI Low-Level API Reference) (see the Remarks below).

Prototype

BOOL _ cdecl KP_Event(
PVA D pDrvCont ext,
WD_EVENT *wd_event);

KP_FUNC_EVENT Kernel Plugln callback function type.

Parameters
Name Type I nput/Output
pDrvContext PVOID I nput/Output
wd_event WD_EVENT* Input
Description
Name Description
pDrvContext Driver context datathat was set by KP_Open [B.6.2] and will also
be passed to KP_Cl ose [B.6.3], KP_I nt Enabl e [B.6.6] and
KP_Cal | [B.6.4]
wd_event Pointer to the PnP/power management event information received from
the user mode

Return Value

TRUE in order to notify the user about the event.

Remarks

KP_Event will be called if the user mode process called WDC_Event Regi st er () [B.3.51]
withf UseKP= TRUE (or of the low-level Event Regi st er () function was called with a
Kernel Plugin handle — seethe WinDriver PCl Low-Level APl Reference).

© 2015 Jungo Connectivity Ltd. 270 CONFIDENTIAL

Appendix B. API Reference

Example

BOOL _ cdecl KP_Event (PVO D pDrvContext, WD _EVENT *wd_event)
{

/* Handl e the event here */
return TRUE, /* Return TRUE to notify the user about the event */

B.6.6. KP_IntEnable

Purpose

Caled when WD _| nt Enabl e() (see WinDriver PCI Low-Level APl Reference) is called from
the user mode with a Kernel Plugin handle.

WD _| nt Enabl e() iscalled automatically from WDC _| nt Enabl e() [B.3.48] and

| nt er rupt Enabl e() (see WinDriver PCl Low-Level APl Reference).

The interrupt context that is set by thisfunction (* ppl nt Cont ext) will be passed to the rest of
the Kernel Plugln interrupt functions.

Prototype

BOOL _ cdecl KP_IntEnable (
PVA D pDrvCont ext,
WD KERNEL_PLUG N CALL *kpCal |,
PVA D *ppl nt Cont ext) ;

KP_FUNC | NT_ENABLE Kernel Plugln callback function type.

Parameters
Name Type I nput/Output
pDrvContext PVOID I nput/Output
kpCall WD_KERNEL_PLUGIN_CALL I nput
» dwMessage DWORD Input
 pData PVOID I nput/Output
* dwResult DWORD Output
pplntContext PVOID* I nput/Output

© 2015 Jungo Connectivity Ltd. 271 CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
pDrvContext Driver context datathat was set by KP_Open [B.6.2] and will
also be passed to KP_Cl ose [B.6.3], KP_Cal | [B.6.4] and
KP_Event [B.6.5]
kpCall Structure with information from VWD_| nt Enabl e() [B.7.3]
pplntContext Pointer to interrupt context data that will be passed to
KP_I nt Di sabl e [B.6.7] and to the Kernel Plugln interrupt handler
functions. Use this context to keep interrupt specific information.

Return Value

Returns TRUE if enableis successful; otherwise returns FAL SE.

Remarks

This function should contain any initialization needed for your Kernel Plugln interrupt handling.

Example

BOOL _ cdecl KP_I nt Enabl e(PVO D pDrvCont ext,
WD_KERNEL_PLUG N_CALL *kpCal |, PVQ D *ppl nt Cont ext)

{
DWORD *pl nt Count ;
/* You can allocate specific nmenory for each interrupt
in *pplntContext */
*ppl nt Context = mal | oc(si zeof (DWORD));
i f (!*pplntContext)
return FALSE;
/[* In this sanple the information is a DWORD used to
count the incoming interrupts */
pl nt Count = (DWORD *) *ppl nt Cont ext ;
plntCount = 0; / Reset the count to zero */
return TRUE;
}

© 2015 Jungo Connectivity Ltd. 272 CONFIDENTIAL

Appendix B. API Reference

B.6.7. KP_IntDisable

Purpose

Cdled when WD _| nt Di sabl e() (see WinDriver PCI Low-Level APl Reference) iscalled
from the user mode for interrupts that were enabled in the Kernel Plugin.

WD _| nt Di sabl e() iscalled automatically from WDC | nt Di sabl e() [B.3.49] and

| nt er rupt Di sabl e() (seeWinDriver PCI Low-Level API Reference).

This function should free any memory that was allocated in KP_| nt Enabl e [B.6.6].

Prototype
void _ cdecl KP_IntDisabl e(PVO D plnt Context);

KP_FUNC | NT_DI SABLE Kernel Plugin callback function type.

Parameters
Name Type I nput/Output
plntContext PVOID I nput
Description
Name Description
plntContext Interrupt context datathat was set by KP_| nt Enabl e [B.6.6]

Return Value

None

Example

void _ cdecl KP_IntDisabl e(PVO D pl nt Cont ext)
{
/* You can free the interrupt specific nenory
al l ocated to plntContext here */
free(plntContext);

}

© 2015 Jungo Connectivity Ltd. 273 CONFIDENTIAL

Appendix B. API Reference

B.6.8. KP_IntAtlirql

Purpose

High-priority legacy interrupt handler routine, which is run at high interrupt request level.
Thisfunction is called upon the arrival of alegacy interrupt that has been enabled using a

Kernel Plugin driver — see the description of WDC | nt Enabl e() [B.3.48] or the low-level

| nt er rupt Enabl e() and WD _I nt Enabl e() functions (see WinDriver PCI Low-Level API
Reference).

Prototype

BOOL _ cdecl KP_IntAtlrgl(
PVA D pl nt Cont ext,
BOOL *pflsMlnterrupt);

KP_FUNC | NT_AT | RQL Kernel Plugin callback function type.

Parameters
Name Type I nput/Output
plntContext PVOID I nput/Output
pflsMylnterrupt BOOL* Output
Description
Name Description
plntContext Pointer to interrupt context data that was set by

KP_I nt Enabl e [B.6.6] and will also be passed to
KP_I nt At Dpc [B.6.9] (if executed) and KP_I nt Di sabl e [B.6.7]

pflsMylnterrupt Set * pf | sMyl nt er rupt to TRUE if the interrupt belongs to this
driver; otherwise set it to FALSE in order to enable the interrupt
service routines of other drivers for the same interrupt to be called

Return Value

TRUE if deferred interrupt processing (DPC) is required; otherwise FALSE.

© 2015 Jungo Connectivity Ltd. 274 CONFIDENTIAL

Appendix B. API Reference

Remarks
» Coderunning at IRQL will only be interrupted by higher priority interrupts.
* Coderunning at high IRQL islimited in the following ways.
* It may only access non-pageable memory.
* It may only call the following functions (or wrapper functions that call these functions):
* WDC_xxx() read/write address or configuration space functions.
« WOC Mul ti Transf er () [B.3.27], or the low-level WD_Tr ansf er (),
WD _Mul ti Transf er (), or WO_DebugAdd() functions (see the WinDriver PCI
Low-Level APl Reference).
» Specific kernel OS functions (such as WDK functions) that can be called from high
interrupt request level. Note that the use of such functions may break the code's portability
to other operating systems.

« It may not call mal | oc(), f r ee(), or any WDC_xxx or WD_xxx API other than those listed
above.

» The code performed at high interrupt request level should be minimal (e.g., only the code that
acknowledges level-sensitive interrupts), sinceit is operating at a high priority. The rest of your
code should be written in KP_I nt At Dpc [B.6.9], which runs at the deferred DISPATCH level
and is not subject to the above restrictions.

Example

BOOL _ cdecl KP_IntAtlrgl (PVO D plnt Cont ext,
BOOL *pflsMlnterrupt)

{
DWORD *pdwl nt Count = (DWORD*) pl nt Cont ext ;
/* Check your hardware here to see if the interrupt belongs to you.
If it does, you must set *pflsMyinterrupt to TRUE
O herwi se, set *pflsMylnterrupt to FALSE. */
*pfl sMyl nterrupt = FALSE;
/* In this exanple we will schedule a DPC once in every 5 interrupts */
(*pdwl nt Count) ++;
i f (*pdw nt Count ==5)
{
*pdwl nt Count = O;
return TRUE;
}
return FALSE;
}

© 2015 Jungo Connectivity Ltd. 275 CONFIDENTIAL

Appendix B. API Reference

B.6.9. KP_IntAtDpc

Purpose

Deferred processing legacy interrupt handler routine.
Thisfunction is called once the high-priority legacy interrupt handling is completed, provided that
KP_IntAtlrgl [B.6.8] returned TRUE.

Prototype

DWORD _ cdecl KP_I nt At Dpc(
PVA D pl nt Cont ext,
DWORD dwCount) ;

KP_FUNC | NT_AT_DPCKernel Plugln callback function type.

Parameters
Name Type I nput/Output
plntContext PVOID I nput/Output
dwCount DWORD Input
Description
Name Description
plntContext Interrupt context datathat was set by KP_| nt Enabl e [B.6.6],

passedto KP_I nt At I r gl [B.6.8], and will be passed to
KP_I nt D sabl e [B.6.7]

dwCount The number of timesKP_I nt At | r gl [B.6.8] returned TRUE since
thelast DPC call. If dwCount is1, KP_I nt Atlrql requested a
DPC only once since the last DPC call. If the valueis greater than 1,
KP_I nt At I rqgl hasalready requested a DPC afew times, but the
interval was too short, therefore KP_| nt At Dpc was not called for
each DPC request.

Return Value

Returns the number of times to notify user mode (i.e., return from WD _| nt Wi t () — seethe
WinDriver PCI Low-Level API Reference).

© 2015 Jungo Connectivity Ltd. 276 CONFIDENTIAL

Appendix B. API Reference

Remarks

» Most of the interrupt handling should be implemented within this function, as opposed to the
high-priority KP_I nt At | r gl [B.6.8] interrupt handler.

» If KP_I nt At Dpc returns with avalue greater than zero, WD_| nt Wi t () returns and
the user-mode interrupt handler will be called in the amount of times set in the return
value of KP_I nt At Dpc. If you do not want the user-mode interrupt handler to execute,
KP_I nt At Dpc should return zero.

Example

DWORD _ cdecl KP_I nt At Dpc(PVO D pl nt Cont ext, DWORD dwCount)

{
/* Return WD_IntWait as nany tines as KP_IntAtlrql

schedul ed KP_I nt At Dpc */
return dwCount;

}
B.6.10. KP_IntAtlrgIMSI

Purpose

High-priority Message-Signaled Interrupts (M SI) / Extended Message-Signaled I nterrupts
(MSI-X) handler routine, which isrun at high interrupt request level. Thisfunction is called upon
the arrival of an MSI/MSI-X that has been enabled using a Kernel Plugln — see the description of
WDC | nt Enabl e() [B.3.48] or thelow-level | nt er r upt Enabl e() and WD _I nt Enabl e()
functions (see WinDriver PCI Low-Level APl Reference).

Prototype

BOOL _ cdecl KP_PCl _IntAtlrql MSI(
PVA D pl nt Cont ext,
ULONG dwlLast Message,
DWORD dwReser ved) ;

KP_FUNC | NT_AT | RQL_IMSI Kernel Pluglin callback function type.

Parameters
Name Type I nput/Output
plntContext PVOID I nput/Output
dwL astM essage DWORD Input
dwReserved DWORD Input

© 2015 Jungo Connectivity Ltd. 277 CONFIDENTIAL

Appendix B. API Reference

Description

Name Description

plntContext Pointer to interrupt context data that was set by
KP_I nt Enabl e [B.6.6] and will also be passed
to KP_I nt At DpcVSI [B.6.11] (if executed) and
KP_I nt D sabl e [B.6.7]

dwL astM essage The message data for the last received interrupt (applicable only on
Windows Vista and higher)

dwReserved Reserved for future use. Do not use this parameter.

Return Value

TRUE if deferred MSI/MSI-X processing (DPC) is required; otherwise FALSE.

Remarks

» Coderunning at IRQL will only be interrupted by higher priority interrupts.

» Coderunning at high IRQL islimited in the following ways.

* It may only access non-pageable memory.

* It may only call the following functions (or wrapper functions that call these functions):

WDC_xxx () read/write address or configuration space functions.

WDC_Mul ti Transf er () [B.3.27], or thelow-level WD_Tr ansf er (),
WD _Mul ti Transf er (), or WO_DebugAdd() functions (see the WinDriver PCI
Low-Level APl Reference).

Specific kernel OS functions (such as WDK functions) that can be called from high
interrupt request level. Note that the use of such functions may break the code's portability
to other operating systems.

e It may not call mal | oc(), f r ee(), or any WDC_xxx or WD_xxx API other than those listed
above.

» The code performed at high interrupt request level should be minimal, sinceit is operating at a

high
runs

priority. The rest of your code should be written in KP_I nt At DpcMSI [B.6.11], which
at the deferred DISPATCH level and is not subject to the above restrictions.

© 2015 Jungo Connectivity Ltd. 278 CONFIDENTIAL

Appendix B. API Reference

Example

BOOL _ cdecl KP_PCI _IntAtlrgl MSI (PVO D pl nt Cont ext,

ULONG dwiLast Message, DWORD dwReser ved)

{
}

return TRUE;

B.6.11. KP_IntAtDpcMSI

Purpose

Deferred processing Message-Signaled Interrupts (M SI) / Extended Message-Signaled I nterrupts

(MSI-X) handler routine.

Thisfunction is called once the high-priority MSI/MSI-X handling is completed, provided that
KP_I nt Atlrgl Ml [B.6.10] returned TRUE.

Prototype

DWORD _ cdecl KP_I nt At DpcMsSI (

PVA D pl nt Cont ext,
DWORD dwCount ,

ULONG dwlLast Message,

DWORD dwReser ved) ;

KP_FUNC | NT_AT_DPC_MsI Kernd Plugln callback function type.

Parameters
Name Type I nput/Output
plntContext PVOID I nput/Output
dwCount DWORD Input
dwL astM essage DWORD Input
dwReserved DWORD Input

© 2015 Jungo Connectivity Ltd.

279

CONFIDENTIAL

Appendix B. API Reference

Description
Name Description
plntContext Interrupt context data that was set by KP_| nt Enabl e [B.6.6],

passedto KP_I nt At I r gl Ml [B.6.10], and will be passed to
KP_I nt D sabl e [B.6.7]

dwCount The number of timesKP_I nt At | r gl MSI [B.6.10] returned TRUE
sincethelast DPC call. If dwCount is1, KP_I nt At | r ql VSI
requested a DPC only once since the last DPC call. If the value
isgreater than 1, KP_I nt At | r gl MSI has already requested
aDPC afew times, but the interval was too short, therefore

KP_I nt At DpcMSI was nhot called for each DPC request.

dwL astM essage The message data for the last received interrupt (applicable only on
Windows Vista and higher)
dwReserved Reserved for future use. Do not use this parameter.

Return Value

Returns the number of times to notify user mode (i.e., return from VWD _| nt Wi t () — seethe
WinDriver PCI Low-Level API Reference).

Remarks

* Most of the MSI/MSI-X handling should be implemented within this function, as opposed to
the high-priority KP_I nt At | r gl MSI [B.6.10] interrupt handler.

* If KP_I nt At DpcMSI returns with avalue greater than zero, WD _| nt Wi t () returns and
the user-mode interrupt handler will be called in the amount of times set in the return value
of KP_I nt At DpcMSI . If you do not want the user-mode interrupt handler to execute,
KP_I nt At DpcVSI should return zero.

Example

DWORD _ cdecl KP_I nt At DpcMSI (PVA D pl nt Cont ext, DWORD dwCount ,
ULONG dwiLast Message, DWORD dwReserved)
{
/* Return WD_IntWait as nany tines as KP_IntAtlrqgl MSI
schedul ed KP_I nt At DpcMsl */
return dwCount;

}

© 2015 Jungo Connectivity Ltd. 280 CONFIDENTIAL

Appendix B. API Reference

B.6.12. COPY TO USER OR_KERNEL,
COPY FROM_USER OR_KERNEL

Purpose

Macros for copying data from the user mode to the Kernel Plugln and vice versa.

Remarks

* The COPY_TO USER OR_KERNEL and COPY_FROM USER_OR_KERNEL are macros used
for copying data (when necessary) to/from user-mode memory addresses (respectively), when
accessing such addresses from within the Kernel Pluglin. Copying the data ensures that the
user-mode address can be used correctly, even if the context of the user-mode process changes
in the midst of the 1/0O operation. Thisis particularly relevant for long operations, during which
the context of the user-mode process may change. The use of macros to perform the copy
provides a generic solution for all supported operating systems.

* Notethat if you wish to access the user-mode data from within the Kernel Plugin interrupt
handler functions, you should first copy the data into some variable in the Kernel Plugin before
the execution of the kernel-mode interrupt handler routines.

* The COPY_TO USER OR_KERNEL and COPY_FROM USER_OR_KERNEL macros are
defined in the WinDriver\include\kpstdlib.h header file.

* For an example of using the COPY_TO_USER _OR_KERNEL macro, see
the KP_Cal | [B.6.4] implementation (KP_PCl _Cal | ()) in the sample
WinDriver/samples/pci_diag/kp_pci/kp_pci.c Kernel Plugin file.

» To safely share adata buffer between the user-mode and Kernel Pluglin routines (e.g.,
KP_I nt Atlrgl [B.6.8] and KP_I nt At Dpc [B.6.9]), consider using the technique outlined
in the technical document titled "How do | share a memory buffer between Kernel Plugin and
user-mode projects for DMA or other purposes?’ found under the "Kernel Plugin" technical
documents section of the "Support” section.

B.6.13. Kernel Plugin Synchronization APIs

This section describes the Kernel Plug-In synchronization APIs.
These APIs support the following synchronization mechanisms:

* Spinlocks [B.6.13.2-B.6.13.5], which are used to synchronize between threads on a single or
multiple CPU system.

© 2015 Jungo Connectivity Ltd. 281 CONFIDENTIAL

Appendix B. API Reference

The Kernel Plugin spinlock functions can be called from any context apart from high
interrupt request level. Hence, they can be called from any Kernel Plugln function except
forKP_IntAtlrqgl [B.6.8]andKP_I nt Atlrqgl MSI [B.6.10].

Note that the spinlock functions can be called from the deferred processing interrupt
handler functions— KP_I nt At Dpc [B.6.9] and KP_I nt At DpcMSI [B.6.11].

* Interlocked operations[B.6.13.6-B.6.13.7], which are used for synchronizing accessto a
variable that is shared by multiple threads by performing complex operations on the variable in
an atomic manner.

The Kernel Pluglin interlocked functions can be called from any context in the Kernel
Plugln, including from high interrupt request level. Hence, they can be called from any
Kernel Plugln function, including the Kernel Plugin interrupt handler functions.

B.6.13.1. Kernel PlugIin Synchronization Types

The Kernel Plugln synchronization APIs use the following types:
* KP_SPI NLOCK — A Kernel Plugln spinlock object structure:

typedef struct _KP_SPI NLOCK KP_SPI NLOCK;

_KP_SPI NLOCK isan internal WinDriver spinlock object structure, opaque to the user.

* KP_I NTERLOCKED — aKernel Plugln interlocked operations counter:

typedef volatile int KP_I NTERLOCKED;

B.6.13.2. kp_spinlock_init()

Purpose

Initializes a new Kernel Plugln spinlock object.

Prototype

KP_SPI NLOCK * kp_spinlock_init(void);

Return Value

If successful, returns a pointer to the new Kernel Plugln spinlock object [B.6.13.1], otherwise
returns NULL.

© 2015 Jungo Connectivity Ltd. 282 CONFIDENTIAL

Appendix B. API Reference

B.6.13.3. kp_spinlock_wait()

Purpose

Waits on aKernel Plugln spinlock object.

Prototype

voi d kp_spinl ock_wai t (KP_SPI NLOCK *spi nl ock) ;

Parameters
Name Type I nput/Output
spinlock KP_SPINLOCK* Input
Description
Name Description
spinlock Pointer to the Kernel Plugln spinlock object [B.6.13.1] on which to
wait

Return Value

None

© 2015 Jungo Connectivity Ltd.

283

CONFIDENTIAL

Appendix B. API Reference

B.6.13.4. kp_spinlock_release()

Purpose

Releases a Kernel Plugln spinlock object.

Prototype

voi d kp_spinl ock_rel ease(KP_SPI NLOCK *spi nl ock) ;

Parameters
Name Type I nput/Output
spinlock KP_SPINLOCK* Input
Description
Name Description
spinlock Pointer to the Kernel Plugln spinlock object [B.6.13.1] to release

Return Value

None

© 2015 Jungo Connectivity Ltd.

284

CONFIDENTIAL

Appendix B. API Reference

B.6.13.5. kp_spinlock_uninit()

Purpose

Uninitializes a Kernel Plugln spinlock object.

Prototype

voi d kp_spi nl ock_uni ni t (KP_SPI NLOCK *spi nl ock) ;

Parameters
Name Type I nput/Output
spinlock KP_SPINLOCK* Input
Description
Name Description
spinlock Pointer to the Kernel Plugln spinlock object [B.6.13.1] to uninitialize

Return Value

None

© 2015 Jungo Connectivity Ltd.

285

CONFIDENTIAL

Appendix B. API Reference

B.6.13.6. kp_interlocked init()

Purpose

Initializes a Kernel Plugln interlocked counter.

Prototype

voi d kp_interl ocked_init(KP_I NTERLOCKED *t ar get);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput/Output
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to initialize

Return Value

None

© 2015 Jungo Connectivity Ltd.

286

CONFIDENTIAL

Appendix B. API Reference

B.6.13.7. kp_interlocked _uninit()

Purpose

Uninitializes a Kernel Plugin interlocked counter.

Prototype

voi d kp_interl ocked_uninit(KP_I NTERLOCKED *t arget);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput/Output
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to

uninitialize

Return Value

None

© 2015 Jungo Connectivity Ltd.

287

CONFIDENTIAL

Appendix B. API Reference

B.6.13.8. kp_interlocked _increment()

Purpose

Increments the value of a Kernel Plugln interlocked counter by one.

Prototype

int kp_interlocked_increnent (KP_I NTERLOCKED *t arget);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput/Output
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to

increment

Return Value

Returns the new value of the interlocked counter (t ar get).

© 2015 Jungo Connectivity Ltd.

288

CONFIDENTIAL

Appendix B. API Reference

B.6.13.9. kp_interlocked _decrement()

Purpose

Decrements the value of a Kernel Plugln interlocked counter by one.

Prototype

int kp_interl ocked_decrenent (KP_I NTERLOCKED *t arget);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput/Output
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to

decrement

Return Value

Returns the new value of the interlocked counter (t ar get).

© 2015 Jungo Connectivity Ltd.

289

CONFIDENTIAL

Appendix B. API Reference

B.6.13.10. kp_interlocked add()

Purpose

Adds a specified value to the current value of a Kernel Plugin interlocked counter.

Prototype

int kp_interlocked_add(
KP_I NTERLOCKED *t ar get ,

int val);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput/Output
va va Input
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to which to

add
va The value to add to the interlocked counter (t ar get)

Return Value

Returns the new value of the interlocked counter (t ar get).

© 2015 Jungo Connectivity Ltd. 290 CONFIDENTIAL

Appendix B. API Reference

B.6.13.11. kp_interlocked read|()

Purpose

Reads to the value of a Kernel Plugin interlocked counter.

Prototype

int kp_interlocked_read(KP_I NTERLOCKED *t arget);

Parameters

Name Type I nput/Output
target KP_INTERLOCKED* I nput
Description

Name Description

target Pointer to the Kernel Plugin interlocked counter [B.6.13.1] to read

Return Value

Returns the value of the interlocked counter (t ar get).

© 2015 Jungo Connectivity Ltd.

291

CONFIDENTIAL

Appendix B. API Reference

B.6.13.12. kp_interlocked_ set()

Purpose

Sets the value of aKernel Plugin interlocked counter to the specified value.

Prototype

voi d kp_interl ocked_set (
KP_I NTERLOCKED *t ar get ,

int val);

Parameters

Name Type I nput/Output

target KP_INTERLOCKED* I nput/Output

va va Input
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to set

va The value to set for the interlocked counter (t ar get)

Return Value

None

© 2015 Jungo Connectivity Ltd.

292

CONFIDENTIAL

Appendix B. API Reference

B.6.13.13. kp_interlocked exchange()

Purpose

Sets the value of aKernel Plugln interlocked counter to the specified value and returns the
previous value of the counter.

Prototype

int kp_interl ocked_exchange(
KP_I NTERLOCKED *t ar get ,

int val);

Parameters

Name Type I nput/Output

target KP_INTERLOCKED* I nput/Output

va va Input
Description

Name Description

target Pointer to the Kernel Plugln interlocked counter [B.6.13.1] to

exchange
va The new value to set for the interlocked counter (t ar get)

Return Value

Returns the previous value of the interlocked counter (t ar get).

B.7. Kernel Plugln Structure Reference

This section contains detailed information about the different Kernel Plugin related structures.
VD XXX structures are used in user-mode functions and KP_ XXX structures are used in kernel-
mode functions.

The Kernel Plugin synchronization types are documented in Section B.6.13.1.

© 2015 Jungo Connectivity Ltd. 293 CONFIDENTIAL

Appendix B. API Reference

B.7.1. WD_KERNEL_PLUGIN

Defines aKernel Plugln open command.

This structure is used by the low-level WD_Ker nel Pl ugl nQpen() and
WD _Ker nel Pl ugl nCl ose() functions— seethe WinDriver PCI Low-Level APl Reference.

Field Type Description
hKernelPlugin DWORD Handleto aKernel Plugin
pcDriverName PCHAR Name of Kernel Plugin driver.

The name should be no longer
than 12 characters and should not
include the * .sys extension.

pcDriverPath PCHAR Thisfield should be set to NULL.
WinDriver will search for the
driver in the operating system's
drivers/modules directory.

pOpenData PVOID Datato passto the
KP_Open [B.6.2] calback in the
Kernel Plugin.

© 2015 Jungo Connectivity Ltd. 294 CONFIDENTIAL

Appendix B. API Reference

B.7.2. WD_INTERRUPT

Interrupt information structure.

This structure is used by the low-level | nt er r upt Enabl e(), | nt er r upt Di sabl e(),
WD _| nt Enabl e(), WD _I nt Di sabl e(), WD_I nt Wi t () and WD_| nt Count () functions.
WDC | nt Enabl e() [B.3.48] calls| nt er r upt Enabl e(), whichinturn calls

WD _| nt Enabl e(), WD_I nt Wi t () and WD _I nt Count (). WDC _I nt Di sabl e() [B.3.49]
calls| nt errupt Di sabl e(), which calls\WD_| nt Di sabl e().

Field Type Description

kpCall WD_KERNEL_ _PLUGIN_CALL | Kerné Plugln message information
structure [B.7.3]. This structure
contains the handle to the Kernel
Plugln and additional information
that should be passed to the
kernel-mode interrupt handler.

If the Kernel Plugln handleis
zero, the interrupt isinstalled
without a Kernel Plugln interrupt
handler. If avalid Kernel Plugin
handle is set, this structure will
passed as a parameter to the

KP_I nt Enabl e [B.6.6] Kernel
Plugln callback function.

For information about the other members of WD_| NTERRUPT, see the description of
| nt er rupt Enabl e() inthe WinDriver PCI Low-Level APl Reference.

© 2015 Jungo Connectivity Ltd. 295 CONFIDENTIAL

Appendix B. API Reference

B.7.3. WD_KERNEL_PLUGIN_CALL

Kernel Plugln message information structure. This structure contains information that will be
passed between a user-mode process and the Kernel Plugin. The structure is used when passing
messages to the Kernel Plugin or when installing a Kernel Plugln interrupt.

This structure is passed as a parameter to the Kernel Plugin KP_Cal | [B.6.4]

and KP_I nt Enabl e [B.6.6] callback functions and is used by the low-level

WD _Ker nel Pl ugl nCal | (), I nt errupt Enabl e() and WD_I nt Enabl e() functions.

WD _Ker nel Pl ugl nCal | () iscaled from the high-level WDC_Cal | Ker Pl ug()

function [B.3.20]. | nt er r upt Enabl e() (which callsWD | nt Enabl e()) is called from the
high-level WDC | nt Enabl e() function [B.3.48].

Field

Type

Description

hKernelPlugin

DWORD

Handleto aKernel Plugln, returned
by WD_Ker nel Pl ugl nOpen()
(seethe WinDriver PCI
Low-Level API Reference)

— whichiscalled from
WDC_Ker nel Pl ugl nOpen()
[B.3.19], and from the

WDC xxxDevi ceOpen()
functions (PCI [B.3.12] /
PCMCIA [B.3.13] / ISA [B.3.14])
when called with the name of a
Kernel Plugin driver [12.4]

dwM essage

DWORD

Message ID to pass to the Kernel
Plugin

pData

PVOID

Pointer to data to pass to the Kernel
Plugin

dwResult

DWORD

Value set by the Kernel Plugin, to
return back to user mode

© 2015 Jungo Connectivity Ltd.

296

CONFIDENTIAL

Appendix B. API Reference

B.7.4. KP_INIT

This structure is used by the Kernel Plugin KP_I ni t function [B.6.1]. Its primary useisto
notify WinDriver of the given driver's name and of which kernel-mode function to call when
WD Ker nel Pl ugl nOpen() (see WinDriver PCl Low-Level APl Reference) iscalled from
the user mode.

WD Ker nel Pl ugl nOpen() iscaled from the high-level

WDC _Ker nel Pl ugl nOpen() [B.3.19] function.

It isalso called from the WDC _xxxDevi ceQpen() functions (PCI [B.3.12] /

PCMCIA [B.3.13] / ISA [B.3.14]) when these functions are called with avalid Kernel
Plugln driver (set inthe pcKPDr i ver Nane parameter). However, to ensure the correct
execution of your code in al scenarios — including execution of a 32-bit application with a
64-bit Kernel Plugin driver — do not use the device-open functions to open a handle to the
Kernel Plugin driver.

Field Type Description

dwVerWwD DWORD The version of the WinDriver
Kernel Plugin library.

cDriverName CHAR[12] The device driver name, up to 12
characters.

funcOpen KP_FUNC_OPEN Standard KP_COpen callback

function [B.6.2], which will

be called when a user-mode
application opens ahandleto a
Kernel Plugin driver [12.4], except
when opening a handle to a 64-bit
driver from a 32-bit application (in
which casef uncOpen_32_64
will be used).

funcOpen_32_64 KP_FUNC_OPEN KP_Open callback

function [B.6.2] that will be called
when a 32-bit application opens a
handle to a 64-bit Kernel Plugin
driver [12.4], except for a 32-bit
application request to open a
handle to a 64-bit driver (when
funcQOpen_32_64 will be

used) [B.6.2].

B.7.5. KP_OPEN_CALL

Thisisthe structure through which the Kernel Plugln defines the names of its callback functions
(other than KP_QOpen). It isused from the KP_Qpen [B.6.2] Kernel Plugln function, which sets
the callbacksin the structure.

© 2015 Jungo Connectivity Ltd. 297 CONFIDENTIAL

Appendix B. API Reference

A Kernel Plugln may implement the following callback functions (other than KP_Qpen [B.6.2]):
» funcClose — Called when the user-mode process is done with this instance of the driver.

» funcCall — Called when the user mode process callsWDC_Cal | Ker Pl ug() [B.3.20], or the
low-level WD_Ker nel Pl ugl nCal | () function (seethe WinDriver PCI Low-Level API
Reference), whichis called from WDC_Cal | Ker Pl ug().

Thisis ageneral-purpose function. Y ou can use it to implement any functionality that should
run in kernel mode (except the interrupt handler, which is a special case). Thef uncCal |
callback determines which function to execute according to the message passed to it from the
user mode.

» funclntEnable — Called when the user-mode process callsWD_| nt Enabl e() with aKernel
Plugln handle. WD_| nt Enabl e() iscalled from | nt er r upt Enabl e() (see WinDriver
PCI Low-Level APl Reference), which is called from the high-level WDC_| nt Enabl e()
function [B.3.48]. When calling WDC_I| nt Enabl e() withf UseKP = TRUE, the function
calls| nt er r upt Enabl e() with aKernel Plugin handle.

This callback function should perform any initialization required when enabling an interrupt.

 funclntDisable — Interrupt cleanup function, which is called when the user-mode process
calls\WD _| nt Di sabl e() — called from | nt er r upt Di sabl e() (see WinDriver PCI
Low-Level API Reference), whichiscaled from WDC | nt Di sabl e() [B.3.49] — after
having enabled interrupts using a Kernel Pluglin driver.

 funcintAtlrgl — High-priority kernel-mode legacy interrupt handler. This callback function
iscalled at high interrupt request level when WinDriver processes alegacy interrupt that
isassigned to this Kernel Plugin. If this function returns a value greater than zero, the
f uncl nt At Dpc() calback is called as a Deferred Procedure Call (DPC).

» funcIntAtDpc — Most of your legacy interrupt handler code should be written in this callback.
It iscaled as a Deferred Procedure Call (DPC) if f uncl nt At | r gl () returned a value greater
than zero.

» funcintAtlrglM SI — High-priority kernel-mode PCl Message-Signaled Interrupts (MSI) and
Extended Message-Signaled Interrupts (MSI-X) handler. This callback functionis called at
high interrupt request level when WinDriver processes an MSI/MSI-X that is assigned to this
Kernel Plugln. If this function returns a value greater than zero, thef uncl nt At DpcVSI ()
callback is called as a Deferred Procedure Call (DPC).

Note: MSI/MSI-X is supported on Linux and Windows Vista and higher.

o funcIntAtDpcM SI — Most of your PCI MSI/MSI-X handler code should be written in this
callback. It is called as a Deferred Procedure Call (DPC) if f uncl nt At | r gl MSI () returned a
value greater than zero.

Note: MSI/MSI-X is supported on Linux and Windows Vista and higher.

© 2015 Jungo Connectivity Ltd. 298 CONFIDENTIAL

Appendix B. API Reference

» funcEvent — Called when a Plug-and-Play or power management event occurs, if the user-
mode processfirst called WDC_Event Regi st er () [B.3.51] withf UseKP = TRUE (or if
the low-level Event Regi st er () function was called with a Kernel Plugin handle — see
WinDriver PCI Low-Level API Reference). This callback function should implement the
desired kernel handling for Plug-and-Play and power management events.

Field Type Description

funcClose KP_FUNC_CLOSE Name of your KP_Cl ose [B.6.3]
function in the kernel.

funcCall KP_FUNC_CALL Name of your KP_Cal | [B.6.4]

function in the kernel.

funcintEnable

KP_FUNC_INT_ENABLE

Name of your
KP_I nt Enabl e [B.6.6] function
in the kernel.

funcintDisable

KP_FUNC_INT_DISABLE

Name of your
KP_I nt Di sabl e [B.6.7]
function in the kernel.

funcintAtlrq|

KP_FUNC_INT_AT_IRQL

Name of your
KP_IntAtlrql [B.6.8] function
in the kernel.

funclintAtDpc

KP_FUNC_INT_AT_DPC

Name of your
KP_I nt At Dpc [B.6.9] functionin
the kernel.

funcintAtirgiIM S|

KP_FUNC_INT_AT_IRQL_MS

Name of your

KP_IntAtlrgl Msl [B.6.10]
function in the kernel.

Note: MSI/MSI-X is supported
on Linux and Windows Vistaand
higher.

funcintAtDpcM SI

KP_FUNC_INT_AT_DPC_MSI

Name of your

KP_I nt At DpcMSI [B.6.11]
function in the kernel.

Note: MSI/MSI-X is supported
on Linux and Windows Vistaand
higher.

funcEvent

KP_FUNC_EVENT

Name of your KP_Event [B.6.5]
function in the kernel.

B.8. User-Mode Utility Functions

This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented on all
operating systems supported by WinDriver.

© 2015 Jungo Connectivity Ltd.

299

CONFIDENTIAL

Appendix B. API Reference

B.8.1. Stat2Str

Purpose

Retrieves the status string that corresponds to a status code.

Prototype

const char *Stat2Str(DWRD dwsSt at us) ;

Parameters
Name Type I nput/Output
dwStatus DWORD Input
Description
Name Description
* dwStatus A numeric status code

Return Value

Returns the verbal status description (string) that corresponds to the specified numeric status code.

Remarks

See Section B.9 for acomplete list of status codes and strings.
B.8.2. get_os_type

Purpose

Retrieves the type of the operating system.

Prototype

OS_TYPE get _os_type(void);

Return Value

Returns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT _DETECT.

© 2015 Jungo Connectivity Ltd. 300 CONFIDENTIAL

Appendix B. API Reference

B.8.3. ThreadStart

Purpose

Creates athread.

Prototype

DWORD ThreadSt art (
HANDLE *phThr ead,
HANDLER_FUNC pFunc,

voi d *pData);

Parameters

Name Type I nput/Output

phThread HANDLE* Output

pFunc typedef void (*HANDLER_FUNC)(Input

void *pData);

pData VOID* I nput
Description

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread isto execute. (The

handler's prototype — HANDLER FUNC — is defined in utils.h.)
pData Pointer to the data to be passed to the new thread

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 301

CONFIDENTIAL

Appendix B. API Reference

B.8.4. ThreadWait

Purpose

Waits for athread to exit.

Prototype

voi d ThreadWai t (HANDLE hThread);

Parameters
Name Type I nput/Output
hThread HANDLE Input
Description
Name Description
hThread The handle to the thread whose completion is awaited

Return Value

None

© 2015 Jungo Connectivity Ltd. 302

CONFIDENTIAL

Appendix B. API Reference

B.8.5. OskEventCreate

Purpose

Creates an event object.

Prototype

DWORD OsEvent Cr eat e(HANDLE *phOsEvent) ;

Parameters
Name Type I nput/Output
phOsEvent HANDLE* Output
Description
Name Description
phOsEvent The pointer to avariable that receives a handle to the newly created
event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 303 CONFIDENTIAL

Appendix B. API Reference

B.8.6. OsEventClose

Purpose

Closes a handle to an event object.

Prototype

voi d CsEvent C ose(HANDLE hOsEvent);

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object to be closed

Return Value

None

© 2015 Jungo Connectivity Ltd.

304

CONFIDENTIAL

Appendix B. API Reference

B.8.7. OsEventWait

Purpose

Waits until a specified event object isin the signaled state or the time-out interval elapses.

Prototype

DWORD OsEvent Wi t (
HANDLE hOsEvent,

DWORD dwSecTi neout) ;

Parameters

Name Type I nput/Output

hOsEvent HANDLE Input

dwSecTimeout DWORD Input
Description

Name Description

hOsEvent The handle to the event object

dwSecTimeout Time-out interval of the event, in seconds.

For an infinite wait, set thetimeout to | NFI NI TE.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

305

CONFIDENTIAL

Appendix B. API Reference

B.8.8. OsEventSignal

Purpose

Sets the specified event object to the signaled state.

Prototype

DWORD GsEvent Si gnal (HANDLE hGsEvent) ;

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 306 CONFIDENTIAL

Appendix B. API Reference

B.8.9. OskEventReset

Purpose

Resets the specified event object to the non-signaled state.

Prototype

DWORD OGsEvent Reset (HANDLE hGsEvent);

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

307

CONFIDENTIAL

Appendix B. API Reference

B.8.10. OsMutexCreate

Purpose

Creates amutex object.

Prototype

DWORD OsMut exCr eat e(HANDLE * phOsMut ex) ;

Parameters
Name Type I nput/Output
phOsM utex HANDLE* Output
Description
Name Description
phOsM utex The pointer to avariable that receives a handle to the newly created
mutex object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 308 CONFIDENTIAL

Appendix B. API Reference

B.8.11. OsMutexClose

Purpose

Closes a handle to a mutex object.

Prototype

voi d CsMut exCl ose(HANDLE hOsMit ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be closed

Return Value

None

© 2015 Jungo Connectivity Ltd.

309

CONFIDENTIAL

Appendix B. API Reference

B.8.12. OsMutexLock

Purpose

L ocks the specified mutex object.

Prototype

DWORD OsMut exLock(HANDLE hOsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be locked

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

310

CONFIDENTIAL

Appendix B. API Reference

B.8.13. OsMutexUnlock

Purpose

Releases (unlocks) alocked mutex object.

Prototype

DWORD OsMut exUnl ock(HANDLE hGsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be unlocked

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd.

311

CONFIDENTIAL

Appendix B. API Reference

B.8.14. PrintDbgMessage

Purpose

Sends debug messages to the Debug Monitor.

Prototype

voi d Print DbgMessage(
DWORD dwievel ,
DWORD dwSect i on,

const char *format

[, argunent]...);
Parameters
Name Type I nput/Output
dwLevel DWORD Input
dwSection DWORD Input
format const char* Input
argument I nput
Description
Name Description
dwLevel Assignsthe level in the Debug Monitor, in which the data will be
declared. If zero, D_ ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.
dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared. If zero, S M SCwill be declared.
For more details please refer to DEBUG_SECTION in windrvr.h.
format Format-control string
argument Optional arguments, limited to 256 bytes

Return Value

None

© 2015 Jungo Connectivity Ltd.

312 CONFIDENTIAL

Appendix B. API Reference

B.8.15. WD _LogStart

Purpose

Opensalog file.

Prototype

DWORD WD _LogSt art (
const char *sFil eNane,
const char *shbde);

Parameters

Name Type I nput/Output
skileName const char* Input

sMode const char* Input
Description

Name Description

skileName Name of log file to be opened

sMode Type of access permitted.

For example, NULL or w opens an empty file for writing, and if the
given file exists, its contents are destroyed;
a opens afile for writing at the end of thefile (i.e., append).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

Remarks

Oncealog fileis opened, all API callsarelogged in thisfile.
Y ou may add your own printouts to the log file by calling WD_LogAdd() [B.8.17].

© 2015 Jungo Connectivity Ltd. 313 CONFIDENTIAL

Appendix B. API Reference

B.8.16. WD _LogStop

Purpose

Closesalogfile.

Prototype

VO D WD_LogSt op(voi d);

Return Value

None

B.8.17. WD_LogAdd

Purpose

Adds user printoutsinto log file.

Prototype

VO D DLLCALLCONV WD _LogAdd(
const char *sFor mat

[, argunent]...);

Parameters

Name Type I nput/Output
sFormat const char* Input
argument I nput
Description

Name Description

sFormat Format-control string

argument Optional format arguments

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.9].

© 2015 Jungo Connectivity Ltd. 314 CONFIDENTIAL

Appendix B. API Reference

B.9. WinDriver Status Codes

B.9.1. Introduction

Most of the WinDriver functions return a status code, where zero (WD_STATUS _SUCCESS)
means success and a non-zero value means failure.

The St at 2St r () functions can be used to retrieve the status description string for a given status

code. The status codes and their descriptive strings are listed below.

B.9.2. Status Codes Returned by WinDriver

Status Code

Description

WD_STATUS SUCCESS

Success

WD_STATUS_INVALID_WD_HANDLE

Invalid WinDriver handle

WD_WINDRIVER_STATUS ERROR

Error

WD_INVALID_HANDLE

Invalid handle

WD_INVALID_PIPE_NUMBER

Invalid pipe number

WD_READ WRITE_CONFLICT

Conflict between read and write operations

WD_ZERO PACKET SIZE

Packet sizeis zero

WD_INSUFFICIENT_RESOURCES

Insufficient resources

WD_UNKNOWN_PIPE_TYPE

Unknown pipe type

WD_SYSTEM_INTERNAL_ERROR

Internal system error

WD_DATA_MISMATCH

Data mismatch

WD_NO_LICENSE

No valid license

WD_NOT_IMPLEMENTED

Function not implemented

WD_KERPLUG_FAILURE

Kernel Plugin failure

WD_FAILED_ENABLING_INTERRUPT

Failed enabling interrupt

WD_INTERRUPT_NOT_ENABLED

Interrupt not enabled

WD_RESOURCE_OVERLAP

Resource overlap

WD_DEVICE_NOT_FOUND

Device not found

WD_WRONG_UNIQUE_ID

Wrong unique ID

WD_OPERATION_ALREADY_DONE

Operation already done

WD_SET_CONFIGURATION_FAILED

Set configuration operation failed

WD_CANT_OBTAIN_PDO

Cannot obtain PDO

WD_TIME_OUT_EXPIRED

Timeout expired

WD_IRP_CANCELED

IRP operation canceled

© 2015 Jungo Connectivity Ltd.

315 CONFIDENTIAL

Appendix B. API Reference

Status Code

Description

WD_FAILED_USER_MAPPING

Failed to map in user space

WD_FAILED_KERNEL_MAPPING

Failed to map in kernel space

WD_NO_RESOURCES_ON_DEVICE

No resources on the device

WD_NO_EVENTS

No events

WD_INVALID_PARAMETER

Invalid parameter

WD_INCORRECT_VERSION

Incorrect WinDriver version installed

WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received an invalid OCTL
WD_OPERATION_FAILED Operation failed

WD_INVALID_32BIT_APP

Received an invalid 32-bit IOCTL

WD_TOO MANY_HANDLES

No room to add handle

WD_NO_DEVICE_OBJECT

Driver not installed

© 2015 Jungo Connectivity Ltd.

316

CONFIDENTIAL

Appendix C
Troubleshooting and Support

Please refer to the online WinDriver support page — http://www.jungo.com/st/support/windriver/
— for additional resources for developers, including

» Technical documents
 FAQs
e Samples

* Quick start guides

© 2015 Jungo Connectivity Ltd. 317 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/

Appendix D
Evaluation Version Limitations

D.1. Windows WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* DriverWizard [4]:
- Eachtime DriverWizard is activated, an Unregistered message appears.

= An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver will function for only 30 days after the original installation.

D.2. Windows CE WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.
» The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60 minutes at atime.
* DriverWizard [4] (used on a host Windows PC) —

- Eachtime DriverWizard is activated, an Unregistered message appears.

= An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

© 2015 Jungo Connectivity Ltd. 318 CONFIDENTIAL

Appendix D. Evaluation Version Limitations

D.3. Linux WinDriver Evaluation Limitations

» Each time WinDriver is activated, an Unregistered message appears.
» DriverWizard [4]:
» Each time DriverWizard is activated, an Unregistered message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver's kernel module will work for no more than 60 minutes at atime. To continue
working, the WinDriver kernel module must be reloaded (unload and load the module) using
the following commands:

; Thefollowing commands must be executed with root privileges.

To unload —
[sbi n/ nrodpr obe -r w ndrvr6

Toload —
<path to wdreg> w ndrvr6

wdreg is provided in the WinDriver/util directory.

© 2015 Jungo Connectivity Ltd. 319 CONFIDENTIAL

Appendix E
Purchasing WinDriver

Visit the WinDriver order page on our web site — http://www.jungo.com/st/order_wd/ — to
select your WinDriver product(s) and receive a quote. Then fill in the WinDriver order form —
available for download from the order page — and send it to Jungo by email or fax (see details
in the order form and in the online order page). If you have installed the evaluation version of
WinDriver, you can also find the order form in the WinDriver/docs directory, or accessit via
Start | WinDriver | Order Form on Windows.

The WinDriver license string will be emailed to you immediately.
Y our WinDriver package will be sent to you via courier or registered mail.

Feel freeto contact us with any question you may have. For full contact information, visit our
contact web page: http://www.jungo.com/st/company/contact-us/.

© 2015 Jungo Connectivity Ltd. 320 CONFIDENTIAL

http://www.jungo.com/st/order_wd/
http://www.jungo.com/st/company/contact-us/

Appendix F
Distributing Your Driver — Legal

Issues

WinDriver islicensed per-seat. The WinDriver license alows one developer on a single computer
to develop an unlimited number of device drivers, and to freely distribute the created drivers
without royalties, as outlined in the license agreement in the WinDriver/docs/wd_license.pdf
file.

© 2015 Jungo Connectivity Ltd. 321 CONFIDENTIAL

Appendix G
Additional Documentation

Updated Manuals

The most updated WinDriver user manuals can be found on Jungo's site at
http://www.jungo.com/st/support/windriver/.

Version History

If you wish to view WinDriver version history, refer to the WinDriver rel ease notes, available
online at http://www.jungo.com/st/support/windriver/wdver/. The release notes include alist of
the new features, enhancements and fixes that have been added in each WinDriver version.

Technical Documents

For additional information, refer to the WinDriver Technical Documents database:
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html.

This database includes detailed descriptions of WinDriver's features, utilities and APIs and their
correct usage, troubleshooting of common problems, useful tips and answers to frequently asked
guestions.

© 2015 Jungo Connectivity Ltd. 322 CONFIDENTIAL

http://www.jungo.com/st/support/windriver/
http://www.jungo.com/st/support/windriver/wdver/
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	WinDriver™ PCI﻿/﻿ISA﻿/﻿CardBus User's Manual
	Table of Contents
	List of Figures
	Chapter 1. WinDriver Overview
	1.1. Introduction to WinDriver
	1.2. Background
	1.2.1. The Challenge
	1.2.2. The WinDriver Solution

	1.3. How Fast Can WinDriver Go?
	1.4. Conclusion
	1.5. WinDriver Benefits
	1.6. WinDriver Architecture
	1.7. What Platforms Does WinDriver Support?
	1.8. Limitations of the Different Evaluation Versions
	1.9. How Do I Develop My Driver with WinDriver?
	1.9.1. On Windows and Linux
	1.9.2. On Windows CE

	1.10. What Does the WinDriver Toolkit Include?
	1.10.1. WinDriver Modules
	1.10.2. Utilities
	1.10.3. Samples and Enhanced-Support Chipset APIs
	1.10.3.1. Enhanced Chipset Support

	1.11. Can I Distribute the Driver Created with WinDriver?

	Chapter 2. Understanding Device Drivers
	2.1. Device Driver Overview
	2.2. Classification of Drivers According to Functionality
	2.2.1. Monolithic Drivers
	2.2.2. Layered Drivers
	2.2.3. Miniport Drivers

	2.3. Classification of Drivers According to Operating Systems
	2.3.1. WDM Drivers
	2.3.2. Unix Device Drivers
	2.3.3. Linux Device Drivers

	2.4. The Entry Point of the Driver
	2.5. Associating the Hardware with the Driver
	2.6. Communicating with Drivers

	Chapter 3. Installing WinDriver
	3.1. System Requirements
	3.1.1. Windows System Requirements
	3.1.2. Windows CE System Requirements
	3.1.3. Linux System Requirements

	3.2. WinDriver Installation Process
	3.2.1. Windows WinDriver Installation Instructions
	3.2.2. Windows CE WinDriver Installation Instructions
	3.2.2.1. Installing WinDriver CE when Building New CE-﻿Based Platforms
	3.2.2.2. Installing WinDriver CE when Developing Applications for Windows CE Computers
	3.2.2.3. Windows CE Installation Note

	3.2.3. Linux WinDriver Installation Instructions
	3.2.3.1. Preparing the System for Installation
	3.2.3.2. Installation
	3.2.3.3. Restricting Hardware Access on Linux

	3.3. Upgrading Your Installation
	3.4. Checking Your Installation
	3.4.1. Windows and Linux Installation Check
	3.4.2. Windows CE Installation Check

	3.5. Uninstalling WinDriver
	3.5.1. Windows WinDriver Uninstall Instructions
	3.5.2. Linux WinDriver Uninstall Instructions

	Chapter 4. Using DriverWizard
	4.1. An Overview
	4.2. DriverWizard Walkthrough
	4.2.1. Automatic Code Generation
	4.2.1.1. Generating the Code
	4.2.1.2. The Generated PCI/PCMCIA/ISA C Code

	4.2.2. Compiling the Generated Code
	4.2.2.1. Windows and Windows CE Compilation
	4.2.2.2. Linux Compilation

	Chapter 5. Developing a Driver
	5.1. Using DriverWizard to Build a Device Driver
	5.2. Writing the Device Driver Without DriverWizard
	5.2.1. Include the Required WinDriver Files
	5.2.2. Write Your Code
	5.2.3. Configure and Build Your Code

	5.3. Developing Your Driver on Windows CE Platforms

	Chapter 6. Debugging Drivers
	6.1. User-Mode Debugging
	6.2. Debug Monitor
	6.2.1. The wddebug_gui Utility
	6.2.1.1. Running wddebug_gui for a Renamed Driver

	6.2.2. The wddebug Utility
	6.2.2.1. Console-Mode wddebug Execution
	6.2.2.2. Windows CE GUI wddebug Execution

	Chapter 7. Enhanced Support for Specific Chipsets
	7.1. Overview
	7.2. Developing a Driver Using the Enhanced Chipset Support

	Chapter 8. PCI Express
	8.1. PCI Express Overview
	8.2. WinDriver for PCI Express

	Chapter 9. Advanced Issues
	9.1. Performing Direct Memory Access (DMA)
	9.1.1. Implementing Scatter/﻿Gather DMA
	9.1.2. Implementing Contiguous-Buffer DMA
	9.1.2.1. Preallocating Contiguous DMA Buffers on Windows

	9.2. Handling Interrupts
	9.2.1. Interrupt Handling — Overview
	9.2.2. WinDriver Interrupt Handling Sequence
	9.2.3. Registering IRQs for Non-Plug﻿-﻿and﻿-﻿Play Hardware on Windows 7 and Higher
	9.2.4. Determining the Interrupt Types Supported by the Hardware
	9.2.5. Determining the Interrupt Type Enabled for a PCI Card
	9.2.6. Setting Up Kernel-Mode Interrupt Transfer Commands
	9.2.6.1. Interrupt Mask Commands
	9.2.6.2. Sample WinDriver Transfer Commands Code

	9.2.7. WinDriver MSI/MSI-﻿X Interrupt Handling
	9.2.7.1. Windows MSI/MSI-﻿X Device INF Files

	9.2.8. Sample User-Mode WinDriver Interrupt Handling Code
	9.2.9. Interrupts on Windows CE
	9.2.9.1. Improving Interrupt Latency on Windows CE

	9.3. Byte Ordering
	9.3.1. Introduction to Endianness
	9.3.2. WinDriver Byte Ordering Macros
	9.3.3. Macros for PCI Target Access
	9.3.4. Macros for PCI Master Access

	Chapter 10. Improving Performance
	10.1. Overview
	10.1.1. Performance Improvement Checklist

	10.2. Improving the Performance of a User﻿-﻿Mode Driver
	10.2.1. Using Direct Access to Memory-Mapped Regions
	10.2.2. Block Transfers and Grouping Multiple Transfers
	10.2.3. Performing 64-﻿Bit Data Transfers

	Chapter 11. Understanding the Kernel PlugIn
	11.1. Background
	11.2. Do I Need to Write a Kernel PlugIn Driver?
	11.3. What Kind of Performance Can I Expect?
	11.4. Overview of the Development Process
	11.5. The Kernel PlugIn Architecture
	11.5.1. Architecture Overview
	11.5.2. WinDriver's Kernel and Kernel PlugIn Interaction
	11.5.3. Kernel PlugIn Components
	11.5.4. Kernel PlugIn Event Sequence
	11.5.4.1. Opening a Handle from the User Mode to a Kernel PlugIn Driver
	11.5.4.2. Handling User-Mode Requests from the Kernel PlugIn
	11.5.4.3. Interrupt Handling — Enable﻿/﻿Disable and High Interrupt Request Level Processing
	11.5.4.4. Interrupt Handling — Deferred Procedure Calls
	11.5.4.5. Plug﻿-﻿and﻿-﻿Play and Power Management Events

	11.6. How Does Kernel PlugIn Work?
	11.6.1. Minimal Requirements for Creating a Kernel PlugIn Driver
	11.6.2. Kernel PlugIn Implementation
	11.6.2.1. Before You Begin
	11.6.2.2. Write Your KP_Init Function
	11.6.2.3. Write Your KP_Open Function(s)
	11.6.2.4. Write the Remaining PlugIn Callbacks

	11.6.3. Sample/Generated Kernel PlugIn Driver Code Overview
	11.6.4. Kernel PlugIn Sample/Generated Code Directory Structure
	11.6.4.1. pci_diag and kp_pci Sample Directories
	11.6.4.2. The Generated DriverWizard Kernel PlugIn Directory

	11.6.5. Handling Interrupts in the Kernel PlugIn
	11.6.5.1. Interrupt Handling in the User Mode (Without the Kernel PlugIn)
	11.6.5.2. Interrupt Handling in the Kernel (Using the Kernel PlugIn)

	11.6.6. Message Passing

	Chapter 12. Creating a Kernel PlugIn Driver
	12.1. Determine Whether a Kernel PlugIn is Needed
	12.2. Prepare the User-Mode Source Code
	12.3. Create a New Kernel PlugIn Project
	12.4. Open a Handle to the Kernel PlugIn
	12.5. Set Interrupt Handling in the Kernel PlugIn
	12.6. Set I/﻿O Handling in the Kernel PlugIn
	12.7. Compile Your Kernel PlugIn Driver
	12.7.1. Windows Kernel PlugIn Driver Compilation
	12.7.2. Linux Kernel PlugIn Driver Compilation

	12.8. Install Your Kernel PlugIn Driver
	12.8.1. Windows Kernel PlugIn Driver Installation
	12.8.2. Linux Kernel PlugIn Driver Installation

	Chapter 13. Dynamically Loading Your Driver
	13.1. Why Do You Need a Dynamically Loadable Driver?
	13.2. Windows Dynamic Driver Loading
	13.2.1. The wdreg Utility
	13.2.1.1. WDM Drivers
	13.2.1.2. Non-WDM Drivers

	13.2.2. Dynamically Loading/Unloading windrvr6.sys INF Files
	13.2.3. Dynamically Loading/Unloading Your Kernel PlugIn Driver

	13.3. Linux Dynamic Driver Loading
	13.3.1. Dynamically Loading/Unloading Your Kernel PlugIn Driver

	13.4. Windows CE Dynamic Driver Loading

	Chapter 14. Distributing Your Driver
	14.1. Getting a Valid WinDriver License
	14.2. Windows Driver Distribution
	14.2.1. Preparing the Distribution Package
	14.2.2. Installing Your Driver on the Target Computer
	14.2.3. Installing Your Kernel PlugIn on the Target Computer

	14.3. Windows CE Driver Distribution
	14.3.1. Distribution to New Windows CE Platforms
	14.3.2. Distribution to Windows CE Computers

	14.4. Linux Driver Distribution
	14.4.1. Preparing the Distribution Package
	14.4.1.1. Kernel Module Components
	14.4.1.2. User-Mode Hardware-Control Application or Shared Object

	14.4.2. Building and Installing the WinDriver Driver Module on the Target
	14.4.3. Building and Installing Your Kernel PlugIn Driver on the Target
	14.4.4. Installing the User-Mode Hardware-Control Application or Shared Object

	Chapter 15. Driver Installation — Advanced Issues
	15.1. Windows INF Files
	15.1.1. Why Should I Create an INF File?
	15.1.2. How Do I Install an INF File When No Driver Exists?
	15.1.3. How Do I Replace an Existing Driver Using the INF File?

	15.2. Renaming the WinDriver Kernel Driver
	15.2.1. Windows Driver Renaming
	15.2.2. Linux Driver Renaming

	15.3. Windows Digital Driver Signing and Certification
	15.3.1. Overview
	15.3.1.1. Authenticode Driver Signature
	15.3.1.2. Windows Certification Program

	15.3.2. Driver Signing and Certification of WinDriver-Based Drivers
	15.3.2.1. HCK Test Notes

	15.4. Windows XP Embedded WinDriver Component

	Appendix A. 64-﻿Bit Operating Systems Support
	A.1. Supported 64-﻿Bit Architectures
	A.2. Support for 32-﻿Bit Applications on 64-﻿Bit Windows and Linux Platforms
	A.3. 64-﻿Bit and 32-﻿Bit Data Types

	Appendix B. API Reference
	B.1. WD_DriverName
	B.2. WDC Library Overview
	B.3. WDC High﻿-﻿Level API
	B.3.1. Structures, Types and General Definitions
	B.3.1.1. WDC_DEVICE_HANDLE
	B.3.1.2. WDC_DRV_OPEN_OPTIONS Definitions
	B.3.1.3. WDC_DIRECTION Enumeration
	B.3.1.4. WDC_ADDR_MODE Enumeration
	B.3.1.5. WDC_ADDR_RW_OPTIONS Enumeration
	B.3.1.6. WDC_ADDR_SIZE Definitions
	B.3.1.7. WDC_SLEEP_OPTIONS Definitions
	B.3.1.8. WDC_DBG_OPTIONS Definitions
	B.3.1.9. WDC_SLOT_U Union
	B.3.1.10. WDC_PCI_SCAN_RESULT Structure
	B.3.1.11. WDC_PCMCIA_SCAN_RESULT Structure
	B.3.1.12. WDC_PCI_SCAN_CAPS_RESULT Structure

	B.3.2. WDC_DriverOpen()
	B.3.3. WDC_DriverClose()
	B.3.4. WDC_PciScanDevices()
	B.3.5. WDC_PciScanDevicesByTopology()
	B.3.6. WDC_PciScanRegisteredDevices()
	B.3.7. WDC_PcmciaScanDevices()
	B.3.8. WDC_PciScanCaps()
	B.3.9. WDC_PciScanExtCaps()
	B.3.10. WDC_PciGetDeviceInfo()
	B.3.11. WDC_PcmciaGetDeviceInfo()
	B.3.12. WDC_PciDeviceOpen()
	B.3.13. WDC_PcmciaDeviceOpen()
	B.3.14. WDC_IsaDeviceOpen()
	B.3.15. WDC_PciDeviceClose()
	B.3.16. WDC_PcmciaDeviceClose()
	B.3.17. WDC_IsaDeviceClose()
	B.3.18. WDC_CardCleanupSetup()
	B.3.19. WDC_KernelPlugInOpen()
	B.3.20. WDC_CallKerPlug()
	B.3.21. WDC_ReadMemXXX()
	B.3.22. WDC_WriteMemXXX()
	B.3.23. WDC_ReadAddrXXX()
	B.3.24. WDC_WriteAddrXXX()
	B.3.25. WDC_ReadAddrBlock()
	B.3.26. WDC_WriteAddrBlock()
	B.3.27. WDC_MultiTransfer()
	B.3.28. WDC_AddrSpaceIsActive()
	B.3.29. WDC_PciReadCfgBySlot()
	B.3.30. WDC_PciWriteCfgBySlot()
	B.3.31. WDC_PciReadCfg()
	B.3.32. WDC_PciWriteCfg()
	B.3.33. WDC_PciReadCfgBySlotXXX()
	B.3.34. WDC_PciWriteCfgBySlotXXX()
	B.3.35. WDC_PciReadCfgXXX()
	B.3.36. WDC_PciWriteCfgXXX()
	B.3.37. WDC_PcmciaReadAttribSpace()
	B.3.38. WDC_PcmciaWriteAttribSpace()
	B.3.39. WDC_PcmciaSetWindow()
	B.3.40. WDC_PcmciaSetVpp()
	B.3.41. WDC_DMAContigBufLock()
	B.3.42. WDC_DMASGBufLock()
	B.3.43. WDC_DMABufUnlock()
	B.3.44. WDC_DMASyncCpu()
	B.3.45. WDC_DMASyncIo()
	B.3.46. WDC_SharedBufferAlloc()
	B.3.47. WDC_SharedBufferFree()
	B.3.48. WDC_IntEnable()
	B.3.49. WDC_IntDisable()
	B.3.50. WDC_IntIsEnabled()
	B.3.51. WDC_EventRegister()
	B.3.52. WDC_EventUnregister()
	B.3.53. WDC_EventIsRegistered()
	B.3.54. WDC_SetDebugOptions()
	B.3.55. WDC_Err()
	B.3.56. WDC_Trace()
	B.3.57. WDC_GetWDHandle()
	B.3.58. WDC_GetDevContext()
	B.3.59. WDC_GetBusType()
	B.3.60. WDC_Sleep()
	B.3.61. WDC_Version()

	B.4. WDC Low﻿-﻿Level API
	B.4.1. WDC_ID_U Union
	B.4.2. WDC_ADDR_DESC Structure
	B.4.3. WDC_DEVICE Structure
	B.4.4. PWDC_DEVICE
	B.4.5. WDC_MEM_DIRECT_ADDR Macro
	B.4.6. WDC_ADDR_IS_MEM Macro
	B.4.7. WDC_GET_ADDR_DESC Macro
	B.4.8. WDC_GET_ENABLED_INT_TYPE Macro
	B.4.9. WDC_GET_INT_OPTIONS Macro
	B.4.10. WDC_INT_IS_MSI Macro
	B.4.11. WDC_GET_ENABLED_INT_LAST_MSG Macro
	B.4.12. WDC_IS_KP Macro

	B.5. WD_xxx Structures, Types and General Definitions
	B.5.1. WD_BUS_TYPE Enumeration
	B.5.2. ITEM_TYPE Enumeration
	B.5.3. WD_PCMCIA_ACC_SPEED Enumeration
	B.5.4. WD_PCMCIA_ACC_WIDTH Enumeration
	B.5.5. WD_PCMCIA_VPP Enumeration
	B.5.6. WD_PCI_ID Structure
	B.5.7. WD_PCMCIA_ID Structure
	B.5.8. WD_PCI_SLOT Structure
	B.5.9. WD_PCMCIA_SLOT Structure
	B.5.10. WD_PCI_CAP Structure
	B.5.11. WD_ITEMS Structure
	B.5.12. WD_CARD Structure
	B.5.13. WD_PCI_CARD_INFO Structure
	B.5.14. WD_PCMCIA_CARD_INFO Structure
	B.5.15. WD_DMA Structure
	B.5.16. WD_TRANSFER Structure

	B.6. Kernel PlugIn Kernel-Mode Functions
	B.6.1. KP_Init
	B.6.2. KP_Open
	B.6.3. KP_Close
	B.6.4. KP_Call
	B.6.5. KP_Event
	B.6.6. KP_IntEnable
	B.6.7. KP_IntDisable
	B.6.8. KP_IntAtIrql
	B.6.9. KP_IntAtDpc
	B.6.10. KP_IntAtIrqlMSI
	B.6.11. KP_IntAtDpcMSI
	B.6.12. COPY_TO_USER_OR_KERNEL, COPY_FROM_USER_OR_KERNEL
	B.6.13. Kernel PlugIn Synchronization APIs
	B.6.13.1. Kernel PlugIn Synchronization Types
	B.6.13.2. kp_spinlock_init()
	B.6.13.3. kp_spinlock_wait()
	B.6.13.4. kp_spinlock_release()
	B.6.13.5. kp_spinlock_uninit()
	B.6.13.6. kp_interlocked_init()
	B.6.13.7. kp_interlocked_uninit()
	B.6.13.8. kp_interlocked_increment()
	B.6.13.9. kp_interlocked_decrement()
	B.6.13.10. kp_interlocked_add()
	B.6.13.11. kp_interlocked_read()
	B.6.13.12. kp_interlocked_set()
	B.6.13.13. kp_interlocked_exchange()

	B.7. Kernel PlugIn Structure Reference
	B.7.1. WD_KERNEL_PLUGIN
	B.7.2. WD_INTERRUPT
	B.7.3. WD_KERNEL_PLUGIN_CALL
	B.7.4. KP_INIT
	B.7.5. KP_OPEN_CALL

	B.8. User-Mode Utility Functions
	B.8.1. Stat2Str
	B.8.2. get_os_type
	B.8.3. ThreadStart
	B.8.4. ThreadWait
	B.8.5. OsEventCreate
	B.8.6. OsEventClose
	B.8.7. OsEventWait
	B.8.8. OsEventSignal
	B.8.9. OsEventReset
	B.8.10. OsMutexCreate
	B.8.11. OsMutexClose
	B.8.12. OsMutexLock
	B.8.13. OsMutexUnlock
	B.8.14. PrintDbgMessage
	B.8.15. WD_LogStart
	B.8.16. WD_LogStop
	B.8.17. WD_LogAdd

	B.9. WinDriver Status Codes
	B.9.1. Introduction
	B.9.2. Status Codes Returned by WinDriver

	Appendix C. Troubleshooting and Support
	Appendix D. Evaluation Version Limitations
	D.1. Windows WinDriver Evaluation Limitations
	D.2. Windows CE WinDriver Evaluation Limitations
	D.3. Linux WinDriver Evaluation Limitations

	Appendix E. Purchasing WinDriver
	Appendix F. Distributing Your Driver — Legal Issues
	Appendix G. Additional Documentation

